
170

ExaLazy: A Model for Lazy-Copy Migration
Mechanism to Support Distributed Exascale
System

*Correspondence: Ehsan *Correspondence: Ehsan
Mousavi Khaneghah, Mousavi Khaneghah,
Shahed University, Shahed University,

Tehran, Iran. EMousavi@Tehran, Iran. EMousavi@
Shahed.ac.irShahed.ac.ir

Abstract
There is a possibility of dynamic and interactive nature occur-
ring at any moment of the scientific program implementation
process in the computing system. While affecting the computa-
tional processes in the system, dynamic and interactive occur-
rence also affects the function of the elements that make up the
management element of the computing system. The effect of
dynamic and interactive events on the function of the elements
that make up the management element of the computing system
causes the time required to run the user program to increase or
the function of these elements to change. These changes either
increase the execution time of the scientific program or make
the system incapable of executing the program. The occurrence
of dynamic and interactive nature creates new situations in the
computing system that the mechanisms to deal with when de-
signing the computing system are not defined and considered.
In this paper, the Lazy-Copy process migration management
mechanism, specifically the Lazy-Copy mechanism in distribut-
ed large-scale systems, the effects of dynamic and interactive
occurrence in the computational system investigate, and the
effects of dynamic and interactive occurrence on the system
investigate. Computational processes on the migration process
and vector algebras try to analyze and enable the Lazy-Copy
process migration mechanism in support of distributed large-
scale systems despite dynamic and interactive events

Keywords: Industry 4.0, Industry 5.0, Industry 6.0, Digital tech-
nology, Cosmetics industry, ICT

Azerbaijan Journal of High Performance Computing, Vol 4, Issue 2, 2021, pp. 170-187
https://doi.org/10.32010/26166127.2021.4.2.170.187

Ehsan Mousavi Khaneghah1, Tayebeh Khoshrooynemati1, Azar Feyziyev2

1 Shahed University, Tehran, Iran. EMousavi@Shahed.ac.ir, Tayebebeh.Khoshrooy@
Shahed.ac.ir
2 Azerbaijan State Oil and Industry University, Baku, Azerbaijan, Azar.Feyziyev@asoiu.edu.
az

1. Introduction
In computing systems, the implementation of activities related to the process

migration, because the migratory process at the time of suspension cannot respond to
requests from other processes, increases the execution time of the scientific program
(Vivek, V., et al., 2019; Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani
ShowkatAbad, A., 2018; Yousafzai, A., et al., 2019). This issue makes several
mechanisms for the process migration based on the requirements of the scientific
program in the field of process transfer patterns from the source computing element to
the destination computing element, as well as reducing the suspension time and
availability of the migratory process (Pickartz, S., Breitbart, J., & Lankes, S., 2016;
Setiawan, I., & Murdyantoro, E., 2016, October; Morin, C., et al., 2003, August).

In traditional process migration systems, the process migration, during the
implementation of activities related to the transfer of migratory process from the source
to destination computing element, does not collect information about the status of the
process, the status of the source and destination computing element and also factors
affecting the process selection for process migration (Di, Z., Shao, E., & Tan, G., 2021;
Stoyanov, R., & Kollingbaum, M. J., 2018, June). Traditionally in traditional computing
systems, the process migration operates on a triple basis (origin, destination, process)
and does not collect information about events in the computing system, especially
events that affect process migration. The system status does not change after
activating the load balancer and calling the process migration in traditional computing
systems, and the system status does not change. The information sent to the process
migration is valid in processing activities (Thoman, P., et al., 2018; Kumar, P., & Kumar,
R., 2019; Xu, Y., et al., 2019). The crazy process migration mechanism develops to
reduce the migration time of the migration process. There is no need to transfer the
address space completely; code and program stack and transfer time Immigrant is
independent of process size as an efficient mechanism (Tang, Z., et al., 2018; Shah,
V., & Donga, J., 2020; Talaat, F. M., et al., 2020).

In the crazy process of migration, the lack of dependence on the size of the
migratory process and the use of a single pattern to transfer different processes makes
it possible to use the exact mechanism to transfer processes with ample address
space. Independence of process size allows the load balancer to consider a broader
range of candidate migration processes (Afzal, S., & Kavitha, G., 2019; Barak, A., &
La'adan, O., 1998; Noshy, M., Ibrahim, A., & Ali, H. A., 2018). In most process migration
mechanisms, because the size of the migratory process directly affects the suspension
time and migration time, usually, the load balancer tries to select smaller processes for
transfer and migration. The functional nature of process migration is insane in such a
way due to the dependencies between the migrant process and other member
processes of the source computational element until the execution of the process in
the destination. Data connections maintain between the migratory process and other
processes in the migration progress (Masdari, M., & Khoshnevis, A., 2020; Anawar, M.
R., et al., 2018).

In distributed Exascale systems, dynamic and interactive events can occur in the
scientific program implementation process (Anzt, H., et al., 2020; Ashraf, M. U., et al.,
2018). The occurrence of dynamic and interactive nature and its effects on the system,
especially on the functioning of the migration process, may either cause the migration
cause to violate, cause the status of the source and destination computational element
to change, or cause the migration time Increase the process. This event causes
dynamic and interactive occurrences to occur in distributed Exascale systems. Their
effects on process migration factors may cause the process of implementing migration
activities to fail, or the source computational element allocates more than the sufficient
time to perform migration-related activities to execute the migration. Changing the
pivotal element of the process to the concept of global activity in distributed Exascale
systems and the need for a mechanism that can handle Exa-sized processes with
minimal downtime makes the lazy migration mechanism one of the most efficient
mechanisms for the process migration (He, T., & Buyya, R., 2021).

The most critical challenge of applying the lazy migration mechanism in distributed
Exascale systems is the high dependence on the status of the two computational
elements of origin and destination (Stoyanov, R., & Kollingbaum, M. J., 2018, June;
Khaneghah, E. M., et al., 2018; Chou, C. C., et al., 2019, November). One of the most
important manifestations of the dependence of the lazy migration mechanism on the
status of these two elements is in the management of memory pages. Suppose the
status of the source computational element changes dynamically and interactively as
a result of an occurrence in such a way that there is a need to call multiple pages. In
that case, the lazy migration mechanism is ineffective. The lazy migration mechanism
is such that it does not collect the status information of the two elements of origin and
destination in the process of process migration, so it can not consider the effects of
dynamic and interactive occurrences on the migration system (Ranjan, A., et al., 2015,
March; Khaneghah, E. M., et al., 2011, December).

In this paper, while analyzing the function of the lazy process migration, the effects
of dynamic and interactive occurrence on this function are investigated. This analysis
makes it possible to develop a lazy process migration function based on the concept
of determinism capable of managing dynamic and interactive impact effects.

2. Lazy Copy Functionality
In traditional computing systems, the lazy process migration, after being called by

the load balancer, changes the status of the process from running to being suspended
(Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N., 2018, February; Plank, J.
S., & Thomason, M. G., 2001; Yang, K., Gu, J., Zhao, T., & Sun, G., 2011, August). This
change in status makes the process unable to respond to requests received and
interact with other processes, like the process migration mechanisms defined in
traditional computing systems. The process migration element transfers part of the
process address space, file descriptors, and dirty memory pages immediately after
changing the status of the process. The transfer of the above information set causes
the initial processing space to form in the destination computational element. Based
on the structure of the operating system used in the computing system, it can state that
the initial state vector shown in Formula 1 is passed as the primary part of the process
by the lazy process migration.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$ = 〈< 𝑃𝑃&! , … , 𝑃𝑃&" >,< 𝑃𝑃'! , … , 𝑃𝑃'# >〉	 (1)
As can be seen in Formula 1, the initial process description vector by the lazy

process migration is a set of m available vectors, and n requested vectors. When
transferring the status of the process from execution to suspension, the system
management element allocates a set of resources to the process. Each resource used
can be considered in the form of a vector in the size of the vector, the amount of
resource used by the migratory process, and its direction have been in a positive
direction.

If the classification used by the computing system management element follows the
operating system classification for resources, then for each process, four 𝑃𝑃&$vectors
can be defined, i can be the file, input, output, process, and memory.

By the load balancer, the migratory process may select for migration for two
reasons: either the process requirements are not satisfied in the source computational
element, or the destination computational element can provide the required resources
in the shortest waiting time . In both cases, the purpose of the transfer of the process
by the migration management element is to transfer the process to a computational
element that can meet the set of expected requirements of the process or<
𝑃𝑃'! , … , 𝑃𝑃'" >. If the computing system management element uses the operating system
classification pattern for resources, then four-vectors 𝑃𝑃'$	can be defined as a file, input,
output, process, and memory. The size of these vectors is the time required by the
process to each source and its direction in a positive direction. From the point of view
of the load balancer, each computational element is also equivalent to 𝑃𝑃'$	Vectors in
the form of four vectors. Such a definition allows the element of the load balancer to
consider four different destinations in process migration for each process. However,
the load balancer migrates the process to an element that meets all the process
requirements in traditional computing systems.

The load balancer typically migrates the process to an element that meets all
process requirements in traditional computing systems. The indicator should also
describe the functional status and capability of the destination computational element
to the requirements of the immigrant candidate process. Using the model described in
Formula 1 and considering the process requirements as describing the status of the

171

In computing systems, the implementation of activities related to the process
migration, because the migratory process at the time of suspension cannot respond to
requests from other processes, increases the execution time of the scientific program
(Vivek, V., et al., 2019; Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani
ShowkatAbad, A., 2018; Yousafzai, A., et al., 2019). This issue makes several
mechanisms for the process migration based on the requirements of the scientific
program in the field of process transfer patterns from the source computing element to
the destination computing element, as well as reducing the suspension time and
availability of the migratory process (Pickartz, S., Breitbart, J., & Lankes, S., 2016;
Setiawan, I., & Murdyantoro, E., 2016, October; Morin, C., et al., 2003, August).

In traditional process migration systems, the process migration, during the
implementation of activities related to the transfer of migratory process from the source
to destination computing element, does not collect information about the status of the
process, the status of the source and destination computing element and also factors
affecting the process selection for process migration (Di, Z., Shao, E., & Tan, G., 2021;
Stoyanov, R., & Kollingbaum, M. J., 2018, June). Traditionally in traditional computing
systems, the process migration operates on a triple basis (origin, destination, process)
and does not collect information about events in the computing system, especially
events that affect process migration. The system status does not change after
activating the load balancer and calling the process migration in traditional computing
systems, and the system status does not change. The information sent to the process
migration is valid in processing activities (Thoman, P., et al., 2018; Kumar, P., & Kumar,
R., 2019; Xu, Y., et al., 2019). The crazy process migration mechanism develops to
reduce the migration time of the migration process. There is no need to transfer the
address space completely; code and program stack and transfer time Immigrant is
independent of process size as an efficient mechanism (Tang, Z., et al., 2018; Shah,
V., & Donga, J., 2020; Talaat, F. M., et al., 2020).

In the crazy process of migration, the lack of dependence on the size of the
migratory process and the use of a single pattern to transfer different processes makes
it possible to use the exact mechanism to transfer processes with ample address
space. Independence of process size allows the load balancer to consider a broader
range of candidate migration processes (Afzal, S., & Kavitha, G., 2019; Barak, A., &
La'adan, O., 1998; Noshy, M., Ibrahim, A., & Ali, H. A., 2018). In most process migration
mechanisms, because the size of the migratory process directly affects the suspension
time and migration time, usually, the load balancer tries to select smaller processes for
transfer and migration. The functional nature of process migration is insane in such a
way due to the dependencies between the migrant process and other member
processes of the source computational element until the execution of the process in
the destination. Data connections maintain between the migratory process and other
processes in the migration progress (Masdari, M., & Khoshnevis, A., 2020; Anawar, M.
R., et al., 2018).

In distributed Exascale systems, dynamic and interactive events can occur in the
scientific program implementation process (Anzt, H., et al., 2020; Ashraf, M. U., et al.,
2018). The occurrence of dynamic and interactive nature and its effects on the system,
especially on the functioning of the migration process, may either cause the migration
cause to violate, cause the status of the source and destination computational element
to change, or cause the migration time Increase the process. This event causes
dynamic and interactive occurrences to occur in distributed Exascale systems. Their
effects on process migration factors may cause the process of implementing migration
activities to fail, or the source computational element allocates more than the sufficient
time to perform migration-related activities to execute the migration. Changing the
pivotal element of the process to the concept of global activity in distributed Exascale
systems and the need for a mechanism that can handle Exa-sized processes with
minimal downtime makes the lazy migration mechanism one of the most efficient
mechanisms for the process migration (He, T., & Buyya, R., 2021).

The most critical challenge of applying the lazy migration mechanism in distributed
Exascale systems is the high dependence on the status of the two computational
elements of origin and destination (Stoyanov, R., & Kollingbaum, M. J., 2018, June;
Khaneghah, E. M., et al., 2018; Chou, C. C., et al., 2019, November). One of the most
important manifestations of the dependence of the lazy migration mechanism on the
status of these two elements is in the management of memory pages. Suppose the
status of the source computational element changes dynamically and interactively as
a result of an occurrence in such a way that there is a need to call multiple pages. In
that case, the lazy migration mechanism is ineffective. The lazy migration mechanism
is such that it does not collect the status information of the two elements of origin and
destination in the process of process migration, so it can not consider the effects of
dynamic and interactive occurrences on the migration system (Ranjan, A., et al., 2015,
March; Khaneghah, E. M., et al., 2011, December).

In this paper, while analyzing the function of the lazy process migration, the effects
of dynamic and interactive occurrence on this function are investigated. This analysis
makes it possible to develop a lazy process migration function based on the concept
of determinism capable of managing dynamic and interactive impact effects.

2. Lazy Copy Functionality
In traditional computing systems, the lazy process migration, after being called by

the load balancer, changes the status of the process from running to being suspended
(Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N., 2018, February; Plank, J.
S., & Thomason, M. G., 2001; Yang, K., Gu, J., Zhao, T., & Sun, G., 2011, August). This
change in status makes the process unable to respond to requests received and
interact with other processes, like the process migration mechanisms defined in
traditional computing systems. The process migration element transfers part of the
process address space, file descriptors, and dirty memory pages immediately after
changing the status of the process. The transfer of the above information set causes
the initial processing space to form in the destination computational element. Based
on the structure of the operating system used in the computing system, it can state that
the initial state vector shown in Formula 1 is passed as the primary part of the process
by the lazy process migration.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$ = 〈< 𝑃𝑃&! , … , 𝑃𝑃&" >,< 𝑃𝑃'! , … , 𝑃𝑃'# >〉	 (1)
As can be seen in Formula 1, the initial process description vector by the lazy

process migration is a set of m available vectors, and n requested vectors. When
transferring the status of the process from execution to suspension, the system
management element allocates a set of resources to the process. Each resource used
can be considered in the form of a vector in the size of the vector, the amount of
resource used by the migratory process, and its direction have been in a positive
direction.

If the classification used by the computing system management element follows the
operating system classification for resources, then for each process, four 𝑃𝑃&$vectors
can be defined, i can be the file, input, output, process, and memory.

By the load balancer, the migratory process may select for migration for two
reasons: either the process requirements are not satisfied in the source computational
element, or the destination computational element can provide the required resources
in the shortest waiting time . In both cases, the purpose of the transfer of the process
by the migration management element is to transfer the process to a computational
element that can meet the set of expected requirements of the process or<
𝑃𝑃'! , … , 𝑃𝑃'" >. If the computing system management element uses the operating system
classification pattern for resources, then four-vectors 𝑃𝑃'$	can be defined as a file, input,
output, process, and memory. The size of these vectors is the time required by the
process to each source and its direction in a positive direction. From the point of view
of the load balancer, each computational element is also equivalent to 𝑃𝑃'$	Vectors in
the form of four vectors. Such a definition allows the element of the load balancer to
consider four different destinations in process migration for each process. However,
the load balancer migrates the process to an element that meets all the process
requirements in traditional computing systems.

The load balancer typically migrates the process to an element that meets all
process requirements in traditional computing systems. The indicator should also
describe the functional status and capability of the destination computational element
to the requirements of the immigrant candidate process. Using the model described in
Formula 1 and considering the process requirements as describing the status of the

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

172

In computing systems, the implementation of activities related to the process
migration, because the migratory process at the time of suspension cannot respond to
requests from other processes, increases the execution time of the scientific program
(Vivek, V., et al., 2019; Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani
ShowkatAbad, A., 2018; Yousafzai, A., et al., 2019). This issue makes several
mechanisms for the process migration based on the requirements of the scientific
program in the field of process transfer patterns from the source computing element to
the destination computing element, as well as reducing the suspension time and
availability of the migratory process (Pickartz, S., Breitbart, J., & Lankes, S., 2016;
Setiawan, I., & Murdyantoro, E., 2016, October; Morin, C., et al., 2003, August).

In traditional process migration systems, the process migration, during the
implementation of activities related to the transfer of migratory process from the source
to destination computing element, does not collect information about the status of the
process, the status of the source and destination computing element and also factors
affecting the process selection for process migration (Di, Z., Shao, E., & Tan, G., 2021;
Stoyanov, R., & Kollingbaum, M. J., 2018, June). Traditionally in traditional computing
systems, the process migration operates on a triple basis (origin, destination, process)
and does not collect information about events in the computing system, especially
events that affect process migration. The system status does not change after
activating the load balancer and calling the process migration in traditional computing
systems, and the system status does not change. The information sent to the process
migration is valid in processing activities (Thoman, P., et al., 2018; Kumar, P., & Kumar,
R., 2019; Xu, Y., et al., 2019). The crazy process migration mechanism develops to
reduce the migration time of the migration process. There is no need to transfer the
address space completely; code and program stack and transfer time Immigrant is
independent of process size as an efficient mechanism (Tang, Z., et al., 2018; Shah,
V., & Donga, J., 2020; Talaat, F. M., et al., 2020).

In the crazy process of migration, the lack of dependence on the size of the
migratory process and the use of a single pattern to transfer different processes makes
it possible to use the exact mechanism to transfer processes with ample address
space. Independence of process size allows the load balancer to consider a broader
range of candidate migration processes (Afzal, S., & Kavitha, G., 2019; Barak, A., &
La'adan, O., 1998; Noshy, M., Ibrahim, A., & Ali, H. A., 2018). In most process migration
mechanisms, because the size of the migratory process directly affects the suspension
time and migration time, usually, the load balancer tries to select smaller processes for
transfer and migration. The functional nature of process migration is insane in such a
way due to the dependencies between the migrant process and other member
processes of the source computational element until the execution of the process in
the destination. Data connections maintain between the migratory process and other
processes in the migration progress (Masdari, M., & Khoshnevis, A., 2020; Anawar, M.
R., et al., 2018).

In distributed Exascale systems, dynamic and interactive events can occur in the
scientific program implementation process (Anzt, H., et al., 2020; Ashraf, M. U., et al.,
2018). The occurrence of dynamic and interactive nature and its effects on the system,
especially on the functioning of the migration process, may either cause the migration
cause to violate, cause the status of the source and destination computational element
to change, or cause the migration time Increase the process. This event causes
dynamic and interactive occurrences to occur in distributed Exascale systems. Their
effects on process migration factors may cause the process of implementing migration
activities to fail, or the source computational element allocates more than the sufficient
time to perform migration-related activities to execute the migration. Changing the
pivotal element of the process to the concept of global activity in distributed Exascale
systems and the need for a mechanism that can handle Exa-sized processes with
minimal downtime makes the lazy migration mechanism one of the most efficient
mechanisms for the process migration (He, T., & Buyya, R., 2021).

The most critical challenge of applying the lazy migration mechanism in distributed
Exascale systems is the high dependence on the status of the two computational
elements of origin and destination (Stoyanov, R., & Kollingbaum, M. J., 2018, June;
Khaneghah, E. M., et al., 2018; Chou, C. C., et al., 2019, November). One of the most
important manifestations of the dependence of the lazy migration mechanism on the
status of these two elements is in the management of memory pages. Suppose the
status of the source computational element changes dynamically and interactively as
a result of an occurrence in such a way that there is a need to call multiple pages. In
that case, the lazy migration mechanism is ineffective. The lazy migration mechanism
is such that it does not collect the status information of the two elements of origin and
destination in the process of process migration, so it can not consider the effects of
dynamic and interactive occurrences on the migration system (Ranjan, A., et al., 2015,
March; Khaneghah, E. M., et al., 2011, December).

In this paper, while analyzing the function of the lazy process migration, the effects
of dynamic and interactive occurrence on this function are investigated. This analysis
makes it possible to develop a lazy process migration function based on the concept
of determinism capable of managing dynamic and interactive impact effects.

2. Lazy Copy Functionality
In traditional computing systems, the lazy process migration, after being called by

the load balancer, changes the status of the process from running to being suspended
(Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N., 2018, February; Plank, J.
S., & Thomason, M. G., 2001; Yang, K., Gu, J., Zhao, T., & Sun, G., 2011, August). This
change in status makes the process unable to respond to requests received and
interact with other processes, like the process migration mechanisms defined in
traditional computing systems. The process migration element transfers part of the
process address space, file descriptors, and dirty memory pages immediately after
changing the status of the process. The transfer of the above information set causes
the initial processing space to form in the destination computational element. Based
on the structure of the operating system used in the computing system, it can state that
the initial state vector shown in Formula 1 is passed as the primary part of the process
by the lazy process migration.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$ = 〈< 𝑃𝑃&! , … , 𝑃𝑃&" >,< 𝑃𝑃'! , … , 𝑃𝑃'# >〉	 (1)
As can be seen in Formula 1, the initial process description vector by the lazy

process migration is a set of m available vectors, and n requested vectors. When
transferring the status of the process from execution to suspension, the system
management element allocates a set of resources to the process. Each resource used
can be considered in the form of a vector in the size of the vector, the amount of
resource used by the migratory process, and its direction have been in a positive
direction.

If the classification used by the computing system management element follows the
operating system classification for resources, then for each process, four 𝑃𝑃&$vectors
can be defined, i can be the file, input, output, process, and memory.

By the load balancer, the migratory process may select for migration for two
reasons: either the process requirements are not satisfied in the source computational
element, or the destination computational element can provide the required resources
in the shortest waiting time . In both cases, the purpose of the transfer of the process
by the migration management element is to transfer the process to a computational
element that can meet the set of expected requirements of the process or<
𝑃𝑃'! , … , 𝑃𝑃'" >. If the computing system management element uses the operating system
classification pattern for resources, then four-vectors 𝑃𝑃'$	can be defined as a file, input,
output, process, and memory. The size of these vectors is the time required by the
process to each source and its direction in a positive direction. From the point of view
of the load balancer, each computational element is also equivalent to 𝑃𝑃'$	Vectors in
the form of four vectors. Such a definition allows the element of the load balancer to
consider four different destinations in process migration for each process. However,
the load balancer migrates the process to an element that meets all the process
requirements in traditional computing systems.

The load balancer typically migrates the process to an element that meets all
process requirements in traditional computing systems. The indicator should also
describe the functional status and capability of the destination computational element
to the requirements of the immigrant candidate process. Using the model described in
Formula 1 and considering the process requirements as describing the status of the

Ehsan Mousavi Khaneghah, et al.

173

In computing systems, the implementation of activities related to the process
migration, because the migratory process at the time of suspension cannot respond to
requests from other processes, increases the execution time of the scientific program
(Vivek, V., et al., 2019; Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani
ShowkatAbad, A., 2018; Yousafzai, A., et al., 2019). This issue makes several
mechanisms for the process migration based on the requirements of the scientific
program in the field of process transfer patterns from the source computing element to
the destination computing element, as well as reducing the suspension time and
availability of the migratory process (Pickartz, S., Breitbart, J., & Lankes, S., 2016;
Setiawan, I., & Murdyantoro, E., 2016, October; Morin, C., et al., 2003, August).

In traditional process migration systems, the process migration, during the
implementation of activities related to the transfer of migratory process from the source
to destination computing element, does not collect information about the status of the
process, the status of the source and destination computing element and also factors
affecting the process selection for process migration (Di, Z., Shao, E., & Tan, G., 2021;
Stoyanov, R., & Kollingbaum, M. J., 2018, June). Traditionally in traditional computing
systems, the process migration operates on a triple basis (origin, destination, process)
and does not collect information about events in the computing system, especially
events that affect process migration. The system status does not change after
activating the load balancer and calling the process migration in traditional computing
systems, and the system status does not change. The information sent to the process
migration is valid in processing activities (Thoman, P., et al., 2018; Kumar, P., & Kumar,
R., 2019; Xu, Y., et al., 2019). The crazy process migration mechanism develops to
reduce the migration time of the migration process. There is no need to transfer the
address space completely; code and program stack and transfer time Immigrant is
independent of process size as an efficient mechanism (Tang, Z., et al., 2018; Shah,
V., & Donga, J., 2020; Talaat, F. M., et al., 2020).

In the crazy process of migration, the lack of dependence on the size of the
migratory process and the use of a single pattern to transfer different processes makes
it possible to use the exact mechanism to transfer processes with ample address
space. Independence of process size allows the load balancer to consider a broader
range of candidate migration processes (Afzal, S., & Kavitha, G., 2019; Barak, A., &
La'adan, O., 1998; Noshy, M., Ibrahim, A., & Ali, H. A., 2018). In most process migration
mechanisms, because the size of the migratory process directly affects the suspension
time and migration time, usually, the load balancer tries to select smaller processes for
transfer and migration. The functional nature of process migration is insane in such a
way due to the dependencies between the migrant process and other member
processes of the source computational element until the execution of the process in
the destination. Data connections maintain between the migratory process and other
processes in the migration progress (Masdari, M., & Khoshnevis, A., 2020; Anawar, M.
R., et al., 2018).

In distributed Exascale systems, dynamic and interactive events can occur in the
scientific program implementation process (Anzt, H., et al., 2020; Ashraf, M. U., et al.,
2018). The occurrence of dynamic and interactive nature and its effects on the system,
especially on the functioning of the migration process, may either cause the migration
cause to violate, cause the status of the source and destination computational element
to change, or cause the migration time Increase the process. This event causes
dynamic and interactive occurrences to occur in distributed Exascale systems. Their
effects on process migration factors may cause the process of implementing migration
activities to fail, or the source computational element allocates more than the sufficient
time to perform migration-related activities to execute the migration. Changing the
pivotal element of the process to the concept of global activity in distributed Exascale
systems and the need for a mechanism that can handle Exa-sized processes with
minimal downtime makes the lazy migration mechanism one of the most efficient
mechanisms for the process migration (He, T., & Buyya, R., 2021).

The most critical challenge of applying the lazy migration mechanism in distributed
Exascale systems is the high dependence on the status of the two computational
elements of origin and destination (Stoyanov, R., & Kollingbaum, M. J., 2018, June;
Khaneghah, E. M., et al., 2018; Chou, C. C., et al., 2019, November). One of the most
important manifestations of the dependence of the lazy migration mechanism on the
status of these two elements is in the management of memory pages. Suppose the
status of the source computational element changes dynamically and interactively as
a result of an occurrence in such a way that there is a need to call multiple pages. In
that case, the lazy migration mechanism is ineffective. The lazy migration mechanism
is such that it does not collect the status information of the two elements of origin and
destination in the process of process migration, so it can not consider the effects of
dynamic and interactive occurrences on the migration system (Ranjan, A., et al., 2015,
March; Khaneghah, E. M., et al., 2011, December).

In this paper, while analyzing the function of the lazy process migration, the effects
of dynamic and interactive occurrence on this function are investigated. This analysis
makes it possible to develop a lazy process migration function based on the concept
of determinism capable of managing dynamic and interactive impact effects.

2. Lazy Copy Functionality
In traditional computing systems, the lazy process migration, after being called by

the load balancer, changes the status of the process from running to being suspended
(Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N., 2018, February; Plank, J.
S., & Thomason, M. G., 2001; Yang, K., Gu, J., Zhao, T., & Sun, G., 2011, August). This
change in status makes the process unable to respond to requests received and
interact with other processes, like the process migration mechanisms defined in
traditional computing systems. The process migration element transfers part of the
process address space, file descriptors, and dirty memory pages immediately after
changing the status of the process. The transfer of the above information set causes
the initial processing space to form in the destination computational element. Based
on the structure of the operating system used in the computing system, it can state that
the initial state vector shown in Formula 1 is passed as the primary part of the process
by the lazy process migration.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$ = 〈< 𝑃𝑃&! , … , 𝑃𝑃&" >,< 𝑃𝑃'! , … , 𝑃𝑃'# >〉	 (1)
As can be seen in Formula 1, the initial process description vector by the lazy

process migration is a set of m available vectors, and n requested vectors. When
transferring the status of the process from execution to suspension, the system
management element allocates a set of resources to the process. Each resource used
can be considered in the form of a vector in the size of the vector, the amount of
resource used by the migratory process, and its direction have been in a positive
direction.

If the classification used by the computing system management element follows the
operating system classification for resources, then for each process, four 𝑃𝑃&$vectors
can be defined, i can be the file, input, output, process, and memory.

By the load balancer, the migratory process may select for migration for two
reasons: either the process requirements are not satisfied in the source computational
element, or the destination computational element can provide the required resources
in the shortest waiting time . In both cases, the purpose of the transfer of the process
by the migration management element is to transfer the process to a computational
element that can meet the set of expected requirements of the process or<
𝑃𝑃'! , … , 𝑃𝑃'" >. If the computing system management element uses the operating system
classification pattern for resources, then four-vectors 𝑃𝑃'$	can be defined as a file, input,
output, process, and memory. The size of these vectors is the time required by the
process to each source and its direction in a positive direction. From the point of view
of the load balancer, each computational element is also equivalent to 𝑃𝑃'$	Vectors in
the form of four vectors. Such a definition allows the element of the load balancer to
consider four different destinations in process migration for each process. However,
the load balancer migrates the process to an element that meets all the process
requirements in traditional computing systems.

The load balancer typically migrates the process to an element that meets all
process requirements in traditional computing systems. The indicator should also
describe the functional status and capability of the destination computational element
to the requirements of the immigrant candidate process. Using the model described in
Formula 1 and considering the process requirements as describing the status of the
source and destination computational element provides the capability for a lazy
process migration mechanism that describes the status of both elements based on the
candidate process requirements. The dependence of the lazy process migration
mechanism on the status of the source and destination computational element causes
that in traditional computing systems, when the lazy process migration mechanism is
activated, then the destination computational element must also satisfy the 𝑃𝑃&$vectors
and also meet the requirements of the vectors 𝑃𝑃'$. Completing this condition is
considered necessary for implementing lazy migration process activities.

In traditional computing systems, the load balancer must be able to make decisions
based on an indicator (or indicators) about the ability of the destination computing
element to respond to the candidate's process migration requests. In the lazy process
migration mechanism, these indicators should define. In the lazy process migration
mechanism, consider the status of the source and destination computational element
as to which processes can qualify as a candidate migration process. As stated in
Formula 1, the process described in the lazy process migration mechanism is
described based on two vectors 𝑃𝑃&$and𝑃𝑃&$, so the process migration mechanism must
be able to be based on a general description pattern for each Generate two vectors
𝑃𝑃&$and𝑃𝑃&$. This general description should include the adaptability of the destination
computing element to the process requirements and the current requirements of the
process met in the source computing element.

In the lazy process migration mechanism, based on the only requirement of the
execution process is in the shortest possible time and the use of computational
resources, and since the index is a function of the load balancer, the execution of the
process in the shortest possible time and maximum use system. So in this type of
computing system, In the lazy process migration mechanism, the process requirement
is limited to the type of CPU source. In traditional computing systems, the description
of the source and destination computing element by the load balancer and
consequently the migration management element is a process based on the time
allocated to the process in the source computational element and the time required by
the process in the destination computing element. In Formula 1, the dimensions of the
vectors 𝑃𝑃&$and 𝑃𝑃'$	are one-dimensional and unique to the CPU, and formula 1 is
rewritable as Formula 2.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$ = 〈𝐶𝐶𝑃𝑃𝑈𝑈(%)*& , 𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#& >,< 𝐶𝐶𝑃𝑃𝑈𝑈,%)*' , … , 𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#' >〉 (2)
As seen in Formula 2, in traditional computing systems, the two vectors of current

process requirements and process requirements that should meet in the destination
computational element are described based on the two concepts of CPU usage time
and process constraints. The concept of CPU usage time in the source computational
element represents the time allotted to the process. Given that discrete times allocate
to the processor in the computational element and the CPU allocation time is a scalar
value, the load balancer uses to decide the outcome of the CPU time allocated to the
processor and uses the weighted average. The processing and time constraints
govern any process request access to the CPU.

The progress migration process should consider the Limitations required to allocate
the CPU to the process, restrictions, and time limits to allocate the process to other
processes. The constraints of assigning the CPU to the processor are required to
execute the process to respond to the interactions of the process with other processes,
including time constraints governing the process. Suppose the allocation of the
process to the computational element is based on the initial allocation and the
execution of the process starts from the local computational element. In that case, the
system designer allocates the process requirements to the requirements of the process
using the computing resource features in the local computational element.

In this case, it expects that the local computing element would be able to execute
all the process requirements. In implementing the scientific program, due to changes
in the requirements of other processes and especially the acceptance of global
processes to run in the local computing element, some of these features can not be
met in the local computing element. They may cause the Load balancer decision to
migrate the process based on the lazy mechanism. In traditional computing systems,
the conventional failure of the CPU to allocate to the process can usually result from
the CPU being involved in running other processes and failing to meet the CPU's time
constraints. According to the information collected by the load balancer, the migratory
process transfers to the computational element that meets Formula 3.

5
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃	𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃-./' = 7𝐶𝐶𝑃𝑃𝑈𝑈	𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃(%)*()#'$*$)#& − 	𝐶𝐶𝑃𝑃𝑈𝑈(%)*&9 > 0	𝑎𝑎𝑎𝑎𝑎𝑎
∀	𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑡𝑡 ∈ 𝑅𝑅𝑃𝑃𝑇𝑇𝑎𝑎𝑇𝑇𝑎𝑎	〈𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#&〉∃	𝐴𝐴𝑎𝑎𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃 ∈ 𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#'

	
F (3)

As can be seen in Formula 3, in the lazy mechanism, the load balancer base two
conditions: the ability to allocate the time required by the process and The ability to
meet remaining constraints and time constraints as conditions for transferring the
process from the computational element to the destination computational element. At
the time of transferring the process from the source computing element to the
destination computing element, two conditions must meet. Still, due to changes in the
execution process of processes in the destination computing element and especially
accepting the implementation of global processes, the double conditions mentioned
in Formula number 3 are violated. Violation of any of the two conditions listed in Formula
3 requires the process to be re-transferred.

One of the essential advantages of the lazy process transfer mechanism is the
absence of a process size constraint in Formula 3 for decision-making by the migration
management element of the load balancer. In Formula 3, unlike other transfer
mechanisms such as Total Copy, Pre Copy, and Flushing, the size of the migratory
process has no effect on Formula 3 and is not used as a decision criterion for process
transfer.

 As can be seen in Formula 3, the status of each of the two computational elements
of origin and destination plays a significant role in lazy process migration. The status
of the set of constraints and constraints met as well as the amount of time allocated to
the process as the primary and pivotal role of the source computing element and the
ability to respond to the constraints of the process as well as provide the time to
execute the process in the destination computational element. The title of the pivotal
factor is the computational element of the destination. The lazy migration management
element establishes the second condition of several mechanisms for estimating the
constraints governing the CPU's use. Lazy migration uses to receive information from
the user using PBS or program iterations and estimate based on program code
iterations in the item using the time required to use the CPU. As can be seen in Formula
3, the executor of Formula 3 is the load balancer. The reason for this is that in traditional
computing systems, the process migration element does not collect information about
the status of the system and the status of the migratory process, the source, and the
destination computing element. Formula 3 is written based on the characteristics of the
lazy migration mechanism, but in Formula 3, the focus of the process is considered an
abstract concept. In Formula 3, the process is considered a stand-alone concept with
requirements, constraints, and constraints on accessing the CPU.

This event is due to the lack of change in the system's status, especially the
computational element of origin, destination, and factors affecting the candidate
migration process. The lazy process migration depends on the status of the
computational element of origin and destination—formula 3 independent time and
event variables. Independence of time and occurrence allows the load balancer to
decide whether or not to make a lazy process migration based on a stable and
unchanged situation.

3. Related Works
The lazy migration algorithm was first used in the Accent operating system to

transfer the minimum address space required. The accent is a distributed operating
system developed at CMU, and its program migration and process migration are such
that it first used this technique to copy pages lazily. This strategy is an example of a
paging request approach that should support remote paging. In this mechanism, only
the process execution status transfer and the address space transfer as needed.

In accent, instead of copying the pages, the virtual parts are created on the
destination machine, and when a pagination error occurs, these virtual parts create a

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

174

source and destination computational element provides the capability for a lazy
process migration mechanism that describes the status of both elements based on the
candidate process requirements. The dependence of the lazy process migration
mechanism on the status of the source and destination computational element causes
that in traditional computing systems, when the lazy process migration mechanism is
activated, then the destination computational element must also satisfy the 𝑃𝑃&$vectors
and also meet the requirements of the vectors 𝑃𝑃'$. Completing this condition is
considered necessary for implementing lazy migration process activities.

In traditional computing systems, the load balancer must be able to make decisions
based on an indicator (or indicators) about the ability of the destination computing
element to respond to the candidate's process migration requests. In the lazy process
migration mechanism, these indicators should define. In the lazy process migration
mechanism, consider the status of the source and destination computational element
as to which processes can qualify as a candidate migration process. As stated in
Formula 1, the process described in the lazy process migration mechanism is
described based on two vectors 𝑃𝑃&$and𝑃𝑃&$, so the process migration mechanism must
be able to be based on a general description pattern for each Generate two vectors
𝑃𝑃&$and𝑃𝑃&$. This general description should include the adaptability of the destination
computing element to the process requirements and the current requirements of the
process met in the source computing element.

In the lazy process migration mechanism, based on the only requirement of the
execution process is in the shortest possible time and the use of computational
resources, and since the index is a function of the load balancer, the execution of the
process in the shortest possible time and maximum use system. So in this type of
computing system, In the lazy process migration mechanism, the process requirement
is limited to the type of CPU source. In traditional computing systems, the description
of the source and destination computing element by the load balancer and
consequently the migration management element is a process based on the time
allocated to the process in the source computational element and the time required by
the process in the destination computing element. In Formula 1, the dimensions of the
vectors 𝑃𝑃&$and 𝑃𝑃'$	are one-dimensional and unique to the CPU, and formula 1 is
rewritable as Formula 2.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$ = 〈𝐶𝐶𝑃𝑃𝑈𝑈(%)*& , 𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#& >,< 𝐶𝐶𝑃𝑃𝑈𝑈,%)*' , … , 𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#' >〉 (2)
As seen in Formula 2, in traditional computing systems, the two vectors of current

process requirements and process requirements that should meet in the destination
computational element are described based on the two concepts of CPU usage time
and process constraints. The concept of CPU usage time in the source computational
element represents the time allotted to the process. Given that discrete times allocate
to the processor in the computational element and the CPU allocation time is a scalar
value, the load balancer uses to decide the outcome of the CPU time allocated to the
processor and uses the weighted average. The processing and time constraints
govern any process request access to the CPU.

The progress migration process should consider the Limitations required to allocate
the CPU to the process, restrictions, and time limits to allocate the process to other
processes. The constraints of assigning the CPU to the processor are required to
execute the process to respond to the interactions of the process with other processes,
including time constraints governing the process. Suppose the allocation of the
process to the computational element is based on the initial allocation and the
execution of the process starts from the local computational element. In that case, the
system designer allocates the process requirements to the requirements of the process
using the computing resource features in the local computational element.

In this case, it expects that the local computing element would be able to execute
all the process requirements. In implementing the scientific program, due to changes
in the requirements of other processes and especially the acceptance of global
processes to run in the local computing element, some of these features can not be
met in the local computing element. They may cause the Load balancer decision to
migrate the process based on the lazy mechanism. In traditional computing systems,
the conventional failure of the CPU to allocate to the process can usually result from
the CPU being involved in running other processes and failing to meet the CPU's time
constraints. According to the information collected by the load balancer, the migratory
process transfers to the computational element that meets Formula 3.

5
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃	𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃-./' = 7𝐶𝐶𝑃𝑃𝑈𝑈	𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃(%)*()#'$*$)#& − 	𝐶𝐶𝑃𝑃𝑈𝑈(%)*&9 > 0	𝑎𝑎𝑎𝑎𝑎𝑎
∀	𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑡𝑡 ∈ 𝑅𝑅𝑃𝑃𝑇𝑇𝑎𝑎𝑇𝑇𝑎𝑎	〈𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#&〉∃	𝐴𝐴𝑎𝑎𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃 ∈ 𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#'

	
F (3)

As can be seen in Formula 3, in the lazy mechanism, the load balancer base two
conditions: the ability to allocate the time required by the process and The ability to
meet remaining constraints and time constraints as conditions for transferring the
process from the computational element to the destination computational element. At
the time of transferring the process from the source computing element to the
destination computing element, two conditions must meet. Still, due to changes in the
execution process of processes in the destination computing element and especially
accepting the implementation of global processes, the double conditions mentioned
in Formula number 3 are violated. Violation of any of the two conditions listed in Formula
3 requires the process to be re-transferred.

One of the essential advantages of the lazy process transfer mechanism is the
absence of a process size constraint in Formula 3 for decision-making by the migration
management element of the load balancer. In Formula 3, unlike other transfer
mechanisms such as Total Copy, Pre Copy, and Flushing, the size of the migratory
process has no effect on Formula 3 and is not used as a decision criterion for process
transfer.

 As can be seen in Formula 3, the status of each of the two computational elements
of origin and destination plays a significant role in lazy process migration. The status
of the set of constraints and constraints met as well as the amount of time allocated to
the process as the primary and pivotal role of the source computing element and the
ability to respond to the constraints of the process as well as provide the time to
execute the process in the destination computational element. The title of the pivotal
factor is the computational element of the destination. The lazy migration management
element establishes the second condition of several mechanisms for estimating the
constraints governing the CPU's use. Lazy migration uses to receive information from
the user using PBS or program iterations and estimate based on program code
iterations in the item using the time required to use the CPU. As can be seen in Formula
3, the executor of Formula 3 is the load balancer. The reason for this is that in traditional
computing systems, the process migration element does not collect information about
the status of the system and the status of the migratory process, the source, and the
destination computing element. Formula 3 is written based on the characteristics of the
lazy migration mechanism, but in Formula 3, the focus of the process is considered an
abstract concept. In Formula 3, the process is considered a stand-alone concept with
requirements, constraints, and constraints on accessing the CPU.

This event is due to the lack of change in the system's status, especially the
computational element of origin, destination, and factors affecting the candidate
migration process. The lazy process migration depends on the status of the
computational element of origin and destination—formula 3 independent time and
event variables. Independence of time and occurrence allows the load balancer to
decide whether or not to make a lazy process migration based on a stable and
unchanged situation.

3. Related Works
The lazy migration algorithm was first used in the Accent operating system to

transfer the minimum address space required. The accent is a distributed operating
system developed at CMU, and its program migration and process migration are such
that it first used this technique to copy pages lazily. This strategy is an example of a
paging request approach that should support remote paging. In this mechanism, only
the process execution status transfer and the address space transfer as needed.

In accent, instead of copying the pages, the virtual parts are created on the
destination machine, and when a pagination error occurs, these virtual parts create a

Ehsan Mousavi Khaneghah, et al.

175

source and destination computational element provides the capability for a lazy
process migration mechanism that describes the status of both elements based on the
candidate process requirements. The dependence of the lazy process migration
mechanism on the status of the source and destination computational element causes
that in traditional computing systems, when the lazy process migration mechanism is
activated, then the destination computational element must also satisfy the 𝑃𝑃&$vectors
and also meet the requirements of the vectors 𝑃𝑃'$. Completing this condition is
considered necessary for implementing lazy migration process activities.

In traditional computing systems, the load balancer must be able to make decisions
based on an indicator (or indicators) about the ability of the destination computing
element to respond to the candidate's process migration requests. In the lazy process
migration mechanism, these indicators should define. In the lazy process migration
mechanism, consider the status of the source and destination computational element
as to which processes can qualify as a candidate migration process. As stated in
Formula 1, the process described in the lazy process migration mechanism is
described based on two vectors 𝑃𝑃&$and𝑃𝑃&$, so the process migration mechanism must
be able to be based on a general description pattern for each Generate two vectors
𝑃𝑃&$and𝑃𝑃&$. This general description should include the adaptability of the destination
computing element to the process requirements and the current requirements of the
process met in the source computing element.

In the lazy process migration mechanism, based on the only requirement of the
execution process is in the shortest possible time and the use of computational
resources, and since the index is a function of the load balancer, the execution of the
process in the shortest possible time and maximum use system. So in this type of
computing system, In the lazy process migration mechanism, the process requirement
is limited to the type of CPU source. In traditional computing systems, the description
of the source and destination computing element by the load balancer and
consequently the migration management element is a process based on the time
allocated to the process in the source computational element and the time required by
the process in the destination computing element. In Formula 1, the dimensions of the
vectors 𝑃𝑃&$and 𝑃𝑃'$	are one-dimensional and unique to the CPU, and formula 1 is
rewritable as Formula 2.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$ = 〈𝐶𝐶𝑃𝑃𝑈𝑈(%)*& , 𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#& >,< 𝐶𝐶𝑃𝑃𝑈𝑈,%)*' , … , 𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#' >〉 (2)
As seen in Formula 2, in traditional computing systems, the two vectors of current

process requirements and process requirements that should meet in the destination
computational element are described based on the two concepts of CPU usage time
and process constraints. The concept of CPU usage time in the source computational
element represents the time allotted to the process. Given that discrete times allocate
to the processor in the computational element and the CPU allocation time is a scalar
value, the load balancer uses to decide the outcome of the CPU time allocated to the
processor and uses the weighted average. The processing and time constraints
govern any process request access to the CPU.

The progress migration process should consider the Limitations required to allocate
the CPU to the process, restrictions, and time limits to allocate the process to other
processes. The constraints of assigning the CPU to the processor are required to
execute the process to respond to the interactions of the process with other processes,
including time constraints governing the process. Suppose the allocation of the
process to the computational element is based on the initial allocation and the
execution of the process starts from the local computational element. In that case, the
system designer allocates the process requirements to the requirements of the process
using the computing resource features in the local computational element.

In this case, it expects that the local computing element would be able to execute
all the process requirements. In implementing the scientific program, due to changes
in the requirements of other processes and especially the acceptance of global
processes to run in the local computing element, some of these features can not be
met in the local computing element. They may cause the Load balancer decision to
migrate the process based on the lazy mechanism. In traditional computing systems,
the conventional failure of the CPU to allocate to the process can usually result from
the CPU being involved in running other processes and failing to meet the CPU's time
constraints. According to the information collected by the load balancer, the migratory
process transfers to the computational element that meets Formula 3.

5
𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃	𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃-./' = 7𝐶𝐶𝑃𝑃𝑈𝑈	𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃(%)*()#'$*$)#& − 	𝐶𝐶𝑃𝑃𝑈𝑈(%)*&9 > 0	𝑎𝑎𝑎𝑎𝑎𝑎
∀	𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑡𝑡 ∈ 𝑅𝑅𝑃𝑃𝑇𝑇𝑎𝑎𝑇𝑇𝑎𝑎	〈𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#&〉∃	𝐴𝐴𝑎𝑎𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃 ∈ 𝑡𝑡𝑇𝑇𝑇𝑇𝑃𝑃!+#$%,%+#'

	
F (3)

As can be seen in Formula 3, in the lazy mechanism, the load balancer base two
conditions: the ability to allocate the time required by the process and The ability to
meet remaining constraints and time constraints as conditions for transferring the
process from the computational element to the destination computational element. At
the time of transferring the process from the source computing element to the
destination computing element, two conditions must meet. Still, due to changes in the
execution process of processes in the destination computing element and especially
accepting the implementation of global processes, the double conditions mentioned
in Formula number 3 are violated. Violation of any of the two conditions listed in Formula
3 requires the process to be re-transferred.

One of the essential advantages of the lazy process transfer mechanism is the
absence of a process size constraint in Formula 3 for decision-making by the migration
management element of the load balancer. In Formula 3, unlike other transfer
mechanisms such as Total Copy, Pre Copy, and Flushing, the size of the migratory
process has no effect on Formula 3 and is not used as a decision criterion for process
transfer.

 As can be seen in Formula 3, the status of each of the two computational elements
of origin and destination plays a significant role in lazy process migration. The status
of the set of constraints and constraints met as well as the amount of time allocated to
the process as the primary and pivotal role of the source computing element and the
ability to respond to the constraints of the process as well as provide the time to
execute the process in the destination computational element. The title of the pivotal
factor is the computational element of the destination. The lazy migration management
element establishes the second condition of several mechanisms for estimating the
constraints governing the CPU's use. Lazy migration uses to receive information from
the user using PBS or program iterations and estimate based on program code
iterations in the item using the time required to use the CPU. As can be seen in Formula
3, the executor of Formula 3 is the load balancer. The reason for this is that in traditional
computing systems, the process migration element does not collect information about
the status of the system and the status of the migratory process, the source, and the
destination computing element. Formula 3 is written based on the characteristics of the
lazy migration mechanism, but in Formula 3, the focus of the process is considered an
abstract concept. In Formula 3, the process is considered a stand-alone concept with
requirements, constraints, and constraints on accessing the CPU.

This event is due to the lack of change in the system's status, especially the
computational element of origin, destination, and factors affecting the candidate
migration process. The lazy process migration depends on the status of the
computational element of origin and destination—formula 3 independent time and
event variables. Independence of time and occurrence allows the load balancer to
decide whether or not to make a lazy process migration based on a stable and
unchanged situation.

3. Related Works
The lazy migration algorithm was first used in the Accent operating system to

transfer the minimum address space required. The accent is a distributed operating
system developed at CMU, and its program migration and process migration are such
that it first used this technique to copy pages lazily. This strategy is an example of a
paging request approach that should support remote paging. In this mechanism, only
the process execution status transfer and the address space transfer as needed.

In accent, instead of copying the pages, the virtual parts are created on the
destination machine, and when a pagination error occurs, these virtual parts create a
link to the page on the source machine. Although not dependent on the size of the
address space, this mechanism depends on the number of memory lags. Virtual
memory transfer is the dominant cost in migration, so this method uses to reduce this
cost by moving pages if needed. The articles (LaViola, J. J., Hachet, M., & Billinghurst,
M., 2011, March; Al-Dhuraibi, Y., 2018) mention operating systems that use multi-
strategy to transfer the process; the essential use of the lazy mechanism is the Mach
operating system. This operating system, based on microkernels, has two tools for
transferring processes. One is SMS, which uses a lazy mechanism for process
migration, and the other is OMS, which provides user-level migration and uses lazy,
pre-copy, and total transfer mechanisms.

Also mentioned in (Rough, J., & Gościński, A., 1998) is another type of operating
system that uses a combination of several strategies to provide a single method to
increase performance and reduce disadvantages. Algorithms derived from this
approach can refer to the generic algorithm, which uses three flushing algorithms: pre-
copy and post-copy. That self-copying algorithm is an extension of the lazy algorithm.
The generic algorithm includes three cycles before migration, during, and after
migration. The delay of this algorithm is like a lazy mechanism. In the migration cycle,
only the status of the process is transferred to the destination machine to continue
running.

The backup mechanism has similarities to other algorithms. This mechanism is a
combination of two mechanisms, pre-copywriter and lazy. Like the lazy algorithm, the
execution of the process on the destination machine continues immediately after the
migration decision. Unlike any algorithm, like a lazy mechanism, it only needs to
transfer at least a subset of the process state to the destination machine. The process
then sends a request to transfer the missed pages whenever it needs a page in the
source machine, taking precedence over the regular transfer of pages. Therefore, the
delay in using the post-copying algorithm, such as the lazy mechanism, is short.

Rough, J., & Gościński, A. (1998) refers to the RHODOS distributed operating
system, which has two purposes. The first is to support distributed systems for parallel
execution and load balancing, and the second is to compare different solutions to
problems with distributed operating systems. To this end, RHODOS, developed as a
flexible laboratory for distributed systems, has made process migration part of the
operating system design phase. RHODOS Migration Center is designed to
accommodate a variety of strategies. This event is confirmed by having process
migration management. Real transfer mechanisms are also part of the appropriate
kernel server. So lazy and direct copy mechanisms are part of the RHODOS
management space. This configuration allows for flexible execution and control of
many of the required strategies. Although this mechanism is not designed explicitly for
RHODOS, it has been quickly added to the operating system with the ability to manage
flexible memory in RHODOS.

4. Influence Dynamic and Interactive Events on Lazy Copy Functionality
The occurrence of dynamic and interactive nature in distributed macro-scale

systems can change the status of each of the two computational elements of origin
and destination and, consequently, the migratory process.

As stated in Formula 1, the immigrant candidate process can base on two vector
spaces, 𝑃𝑃&$ or the collection of process requirements from the source computational
element, and 𝑃𝑃&$, the set of standard requirements of the candidate migration process
from the computational element considered the destination. n traditional computing
systems, from the point of view of the load balancer, the inadequacy of each of the
𝑃𝑃&$collection members or the inability to provide the 𝑃𝑃&$Collection members cause the
process migration process to begin.

Also, in traditional computing systems, from the point of view of the load balancer,
if the destination computing element can provide all members of the 𝑃𝑃&$set to the
process candidate migration process, taking into account time and space constraints,
then the acceptability capability and continues to run the process.

In traditional computing systems, the lazy process migration does not collect
information about the status of either 𝑃𝑃&$ 	and	𝑃𝑃&$. In traditional computing systems, any
change in the state of the vector sets 𝑃𝑃&$and 𝑃𝑃&$After starting the lazy process; migration
is not considered because the load balancer is not active. In traditional computing
systems, at the moment of starting the process migration activity, the decision on the
implementation of the process migration activity, as well as the decision on the
destination computing element and the status of the descriptive parameters of the
source and destination computing element, is the load balancer and the set of
decisions made by the load balancer. This event leaves the lazy migration manager
lacking information about the decision-making process on migration. In computing
systems, the implementation of process migration-related activities is the responsibility
of the lazy process migration, so the load balancer is not activated and can not decide
based on changes in the status of parameters governing the process migration
process. In traditional computing systems, the lazy process migration, based on a set
of specific parameters defined by the load balancer, executes the process of
implementing activities related to process migration management.

In distributed Exascale systems, dynamic and interactive events can occur,
including the start-up and decision-making process on migration. This event causes
that in distributed Exascale systems, both load balancer and lazy process migration
management need to describe the process status in the source and destination
computational element.

In the lazy process migration mechanism, unlike other mechanisms used to manage
process migration, the status of the source and destination computing element is
described based on the requirements of the process. Following the requirements of
the process, the minimum amount of data transfer to start the execution of the
processing activity in the destination computational element.

The possibility of dynamic and interactive occurrence in distributed Exascale
systems allows vector sets describing the process requirements of the source and
destination computational element to be developed and rewritten according to Formula
4.
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃-"#$%$*1&3

(%)*(𝐺𝐺) = 〈J< 𝑃𝑃&! , … , 𝑃𝑃&" >K(𝑇𝑇, 𝐿𝐿, 𝐷𝐷, 𝐺𝐺), J< 𝑃𝑃'! , … , 𝑃𝑃'# >K(𝑇𝑇, 𝐿𝐿, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐺𝐺)〉 (4)
As can be seen in Formula 4, the candidate process changes state from an abstract

process to a process described in the global activity. This state is because, in
traditional computing systems, the load balancer considers the concept of process as
an abstract concept that the failure of one or more members of the collection set
𝑃𝑃&$Causes that The process requires the transfer and migration of a process. The load
balancer also considers the process concept in the destination computational element
as an abstract concept. It assumes that if the collection members 𝑃𝑃&$ are satisfied, then
the process can be executed in It has the computational element of the destination.
The load balancer also considers the concept of processing in the destination
computational element as an abstract concept and assumes that if the collection
members 𝑃𝑃&$are satisfied. In this case, the process can execute in the destination
computational element.

In distributed Exascale systems, the concept of the process defines as a concept
related to global activity. Each computational process defined in the distributed
Exascalesystem is part of global activity in that member processes are activities in
communication and interaction. The concept of process in distributed
Exascalesystems influences the functionality and events governing other member
global activity processes. Therefore, in distributed Exascalesystems, the concept of
the migratory process cannot be considered without considering other member
processes of global activity.

In Formula 4, This matter has caused the candidate migration process to be
considered a function of other processes. From the point of view of the lazy process
migration, the description of the migration candidate process and the process
requirements in the source computational element, and the process expectations of
the destination computational element depend on the needs of other member activity
processes.

In Formula 4, the candidate migration process concept is considered a process
based on two independent variables of time and dynamic and interactive event
occurrence. In distributed Exascalesystems, at any moment in implementing the
candidate migration process, the process can change the status of the process

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

176

link to the page on the source machine. Although not dependent on the size of the
address space, this mechanism depends on the number of memory lags. Virtual
memory transfer is the dominant cost in migration, so this method uses to reduce this
cost by moving pages if needed. The articles (LaViola, J. J., Hachet, M., & Billinghurst,
M., 2011, March; Al-Dhuraibi, Y., 2018) mention operating systems that use multi-
strategy to transfer the process; the essential use of the lazy mechanism is the Mach
operating system. This operating system, based on microkernels, has two tools for
transferring processes. One is SMS, which uses a lazy mechanism for process
migration, and the other is OMS, which provides user-level migration and uses lazy,
pre-copy, and total transfer mechanisms.

Also mentioned in (Rough, J., & Gościński, A., 1998) is another type of operating
system that uses a combination of several strategies to provide a single method to
increase performance and reduce disadvantages. Algorithms derived from this
approach can refer to the generic algorithm, which uses three flushing algorithms: pre-
copy and post-copy. That self-copying algorithm is an extension of the lazy algorithm.
The generic algorithm includes three cycles before migration, during, and after
migration. The delay of this algorithm is like a lazy mechanism. In the migration cycle,
only the status of the process is transferred to the destination machine to continue
running.

The backup mechanism has similarities to other algorithms. This mechanism is a
combination of two mechanisms, pre-copywriter and lazy. Like the lazy algorithm, the
execution of the process on the destination machine continues immediately after the
migration decision. Unlike any algorithm, like a lazy mechanism, it only needs to
transfer at least a subset of the process state to the destination machine. The process
then sends a request to transfer the missed pages whenever it needs a page in the
source machine, taking precedence over the regular transfer of pages. Therefore, the
delay in using the post-copying algorithm, such as the lazy mechanism, is short.

Rough, J., & Gościński, A. (1998) refers to the RHODOS distributed operating
system, which has two purposes. The first is to support distributed systems for parallel
execution and load balancing, and the second is to compare different solutions to
problems with distributed operating systems. To this end, RHODOS, developed as a
flexible laboratory for distributed systems, has made process migration part of the
operating system design phase. RHODOS Migration Center is designed to
accommodate a variety of strategies. This event is confirmed by having process
migration management. Real transfer mechanisms are also part of the appropriate
kernel server. So lazy and direct copy mechanisms are part of the RHODOS
management space. This configuration allows for flexible execution and control of
many of the required strategies. Although this mechanism is not designed explicitly for
RHODOS, it has been quickly added to the operating system with the ability to manage
flexible memory in RHODOS.

4. Influence Dynamic and Interactive Events on Lazy Copy Functionality
The occurrence of dynamic and interactive nature in distributed macro-scale

systems can change the status of each of the two computational elements of origin
and destination and, consequently, the migratory process.

As stated in Formula 1, the immigrant candidate process can base on two vector
spaces, 𝑃𝑃&$ or the collection of process requirements from the source computational
element, and 𝑃𝑃&$, the set of standard requirements of the candidate migration process
from the computational element considered the destination. n traditional computing
systems, from the point of view of the load balancer, the inadequacy of each of the
𝑃𝑃&$collection members or the inability to provide the 𝑃𝑃&$Collection members cause the
process migration process to begin.

Also, in traditional computing systems, from the point of view of the load balancer,
if the destination computing element can provide all members of the 𝑃𝑃&$set to the
process candidate migration process, taking into account time and space constraints,
then the acceptability capability and continues to run the process.

In traditional computing systems, the lazy process migration does not collect
information about the status of either 𝑃𝑃&$ 	and	𝑃𝑃&$. In traditional computing systems, any
change in the state of the vector sets 𝑃𝑃&$and 𝑃𝑃&$After starting the lazy process; migration
is not considered because the load balancer is not active. In traditional computing
systems, at the moment of starting the process migration activity, the decision on the
implementation of the process migration activity, as well as the decision on the
destination computing element and the status of the descriptive parameters of the
source and destination computing element, is the load balancer and the set of
decisions made by the load balancer. This event leaves the lazy migration manager
lacking information about the decision-making process on migration. In computing
systems, the implementation of process migration-related activities is the responsibility
of the lazy process migration, so the load balancer is not activated and can not decide
based on changes in the status of parameters governing the process migration
process. In traditional computing systems, the lazy process migration, based on a set
of specific parameters defined by the load balancer, executes the process of
implementing activities related to process migration management.

In distributed Exascale systems, dynamic and interactive events can occur,
including the start-up and decision-making process on migration. This event causes
that in distributed Exascale systems, both load balancer and lazy process migration
management need to describe the process status in the source and destination
computational element.

In the lazy process migration mechanism, unlike other mechanisms used to manage
process migration, the status of the source and destination computing element is
described based on the requirements of the process. Following the requirements of
the process, the minimum amount of data transfer to start the execution of the
processing activity in the destination computational element.

The possibility of dynamic and interactive occurrence in distributed Exascale
systems allows vector sets describing the process requirements of the source and
destination computational element to be developed and rewritten according to Formula
4.
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃-"#$%$*1&3

(%)*(𝐺𝐺) = 〈J< 𝑃𝑃&! , … , 𝑃𝑃&" >K(𝑇𝑇, 𝐿𝐿, 𝐷𝐷, 𝐺𝐺), J< 𝑃𝑃'! , … , 𝑃𝑃'# >K(𝑇𝑇, 𝐿𝐿, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐺𝐺)〉 (4)
As can be seen in Formula 4, the candidate process changes state from an abstract

process to a process described in the global activity. This state is because, in
traditional computing systems, the load balancer considers the concept of process as
an abstract concept that the failure of one or more members of the collection set
𝑃𝑃&$Causes that The process requires the transfer and migration of a process. The load
balancer also considers the process concept in the destination computational element
as an abstract concept. It assumes that if the collection members 𝑃𝑃&$ are satisfied, then
the process can be executed in It has the computational element of the destination.
The load balancer also considers the concept of processing in the destination
computational element as an abstract concept and assumes that if the collection
members 𝑃𝑃&$are satisfied. In this case, the process can execute in the destination
computational element.

In distributed Exascale systems, the concept of the process defines as a concept
related to global activity. Each computational process defined in the distributed
Exascalesystem is part of global activity in that member processes are activities in
communication and interaction. The concept of process in distributed
Exascalesystems influences the functionality and events governing other member
global activity processes. Therefore, in distributed Exascalesystems, the concept of
the migratory process cannot be considered without considering other member
processes of global activity.

In Formula 4, This matter has caused the candidate migration process to be
considered a function of other processes. From the point of view of the lazy process
migration, the description of the migration candidate process and the process
requirements in the source computational element, and the process expectations of
the destination computational element depend on the needs of other member activity
processes.

In Formula 4, the candidate migration process concept is considered a process
based on two independent variables of time and dynamic and interactive event
occurrence. In distributed Exascalesystems, at any moment in implementing the
candidate migration process, the process can change the status of the process

Ehsan Mousavi Khaneghah, et al.

177

link to the page on the source machine. Although not dependent on the size of the
address space, this mechanism depends on the number of memory lags. Virtual
memory transfer is the dominant cost in migration, so this method uses to reduce this
cost by moving pages if needed. The articles (LaViola, J. J., Hachet, M., & Billinghurst,
M., 2011, March; Al-Dhuraibi, Y., 2018) mention operating systems that use multi-
strategy to transfer the process; the essential use of the lazy mechanism is the Mach
operating system. This operating system, based on microkernels, has two tools for
transferring processes. One is SMS, which uses a lazy mechanism for process
migration, and the other is OMS, which provides user-level migration and uses lazy,
pre-copy, and total transfer mechanisms.

Also mentioned in (Rough, J., & Gościński, A., 1998) is another type of operating
system that uses a combination of several strategies to provide a single method to
increase performance and reduce disadvantages. Algorithms derived from this
approach can refer to the generic algorithm, which uses three flushing algorithms: pre-
copy and post-copy. That self-copying algorithm is an extension of the lazy algorithm.
The generic algorithm includes three cycles before migration, during, and after
migration. The delay of this algorithm is like a lazy mechanism. In the migration cycle,
only the status of the process is transferred to the destination machine to continue
running.

The backup mechanism has similarities to other algorithms. This mechanism is a
combination of two mechanisms, pre-copywriter and lazy. Like the lazy algorithm, the
execution of the process on the destination machine continues immediately after the
migration decision. Unlike any algorithm, like a lazy mechanism, it only needs to
transfer at least a subset of the process state to the destination machine. The process
then sends a request to transfer the missed pages whenever it needs a page in the
source machine, taking precedence over the regular transfer of pages. Therefore, the
delay in using the post-copying algorithm, such as the lazy mechanism, is short.

Rough, J., & Gościński, A. (1998) refers to the RHODOS distributed operating
system, which has two purposes. The first is to support distributed systems for parallel
execution and load balancing, and the second is to compare different solutions to
problems with distributed operating systems. To this end, RHODOS, developed as a
flexible laboratory for distributed systems, has made process migration part of the
operating system design phase. RHODOS Migration Center is designed to
accommodate a variety of strategies. This event is confirmed by having process
migration management. Real transfer mechanisms are also part of the appropriate
kernel server. So lazy and direct copy mechanisms are part of the RHODOS
management space. This configuration allows for flexible execution and control of
many of the required strategies. Although this mechanism is not designed explicitly for
RHODOS, it has been quickly added to the operating system with the ability to manage
flexible memory in RHODOS.

4. Influence Dynamic and Interactive Events on Lazy Copy Functionality
The occurrence of dynamic and interactive nature in distributed macro-scale

systems can change the status of each of the two computational elements of origin
and destination and, consequently, the migratory process.

As stated in Formula 1, the immigrant candidate process can base on two vector
spaces, 𝑃𝑃&$ or the collection of process requirements from the source computational
element, and 𝑃𝑃&$, the set of standard requirements of the candidate migration process
from the computational element considered the destination. n traditional computing
systems, from the point of view of the load balancer, the inadequacy of each of the
𝑃𝑃&$collection members or the inability to provide the 𝑃𝑃&$Collection members cause the
process migration process to begin.

Also, in traditional computing systems, from the point of view of the load balancer,
if the destination computing element can provide all members of the 𝑃𝑃&$set to the
process candidate migration process, taking into account time and space constraints,
then the acceptability capability and continues to run the process.

In traditional computing systems, the lazy process migration does not collect
information about the status of either 𝑃𝑃&$ 	and	𝑃𝑃&$. In traditional computing systems, any
change in the state of the vector sets 𝑃𝑃&$and 𝑃𝑃&$After starting the lazy process; migration
is not considered because the load balancer is not active. In traditional computing
systems, at the moment of starting the process migration activity, the decision on the
implementation of the process migration activity, as well as the decision on the
destination computing element and the status of the descriptive parameters of the
source and destination computing element, is the load balancer and the set of
decisions made by the load balancer. This event leaves the lazy migration manager
lacking information about the decision-making process on migration. In computing
systems, the implementation of process migration-related activities is the responsibility
of the lazy process migration, so the load balancer is not activated and can not decide
based on changes in the status of parameters governing the process migration
process. In traditional computing systems, the lazy process migration, based on a set
of specific parameters defined by the load balancer, executes the process of
implementing activities related to process migration management.

In distributed Exascale systems, dynamic and interactive events can occur,
including the start-up and decision-making process on migration. This event causes
that in distributed Exascale systems, both load balancer and lazy process migration
management need to describe the process status in the source and destination
computational element.

In the lazy process migration mechanism, unlike other mechanisms used to manage
process migration, the status of the source and destination computing element is
described based on the requirements of the process. Following the requirements of
the process, the minimum amount of data transfer to start the execution of the
processing activity in the destination computational element.

The possibility of dynamic and interactive occurrence in distributed Exascale
systems allows vector sets describing the process requirements of the source and
destination computational element to be developed and rewritten according to Formula
4.
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃-"#$%$*1&3

(%)*(𝐺𝐺) = 〈J< 𝑃𝑃&! , … , 𝑃𝑃&" >K(𝑇𝑇, 𝐿𝐿, 𝐷𝐷, 𝐺𝐺), J< 𝑃𝑃'! , … , 𝑃𝑃'# >K(𝑇𝑇, 𝐿𝐿, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐺𝐺)〉 (4)
As can be seen in Formula 4, the candidate process changes state from an abstract

process to a process described in the global activity. This state is because, in
traditional computing systems, the load balancer considers the concept of process as
an abstract concept that the failure of one or more members of the collection set
𝑃𝑃&$Causes that The process requires the transfer and migration of a process. The load
balancer also considers the process concept in the destination computational element
as an abstract concept. It assumes that if the collection members 𝑃𝑃&$ are satisfied, then
the process can be executed in It has the computational element of the destination.
The load balancer also considers the concept of processing in the destination
computational element as an abstract concept and assumes that if the collection
members 𝑃𝑃&$are satisfied. In this case, the process can execute in the destination
computational element.

In distributed Exascale systems, the concept of the process defines as a concept
related to global activity. Each computational process defined in the distributed
Exascalesystem is part of global activity in that member processes are activities in
communication and interaction. The concept of process in distributed
Exascalesystems influences the functionality and events governing other member
global activity processes. Therefore, in distributed Exascalesystems, the concept of
the migratory process cannot be considered without considering other member
processes of global activity.

In Formula 4, This matter has caused the candidate migration process to be
considered a function of other processes. From the point of view of the lazy process
migration, the description of the migration candidate process and the process
requirements in the source computational element, and the process expectations of
the destination computational element depend on the needs of other member activity
processes.

In Formula 4, the candidate migration process concept is considered a process
based on two independent variables of time and dynamic and interactive event
occurrence. In distributed Exascalesystems, at any moment in implementing the
candidate migration process, the process can change the status of the process

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

178

link to the page on the source machine. Although not dependent on the size of the
address space, this mechanism depends on the number of memory lags. Virtual
memory transfer is the dominant cost in migration, so this method uses to reduce this
cost by moving pages if needed. The articles (LaViola, J. J., Hachet, M., & Billinghurst,
M., 2011, March; Al-Dhuraibi, Y., 2018) mention operating systems that use multi-
strategy to transfer the process; the essential use of the lazy mechanism is the Mach
operating system. This operating system, based on microkernels, has two tools for
transferring processes. One is SMS, which uses a lazy mechanism for process
migration, and the other is OMS, which provides user-level migration and uses lazy,
pre-copy, and total transfer mechanisms.

Also mentioned in (Rough, J., & Gościński, A., 1998) is another type of operating
system that uses a combination of several strategies to provide a single method to
increase performance and reduce disadvantages. Algorithms derived from this
approach can refer to the generic algorithm, which uses three flushing algorithms: pre-
copy and post-copy. That self-copying algorithm is an extension of the lazy algorithm.
The generic algorithm includes three cycles before migration, during, and after
migration. The delay of this algorithm is like a lazy mechanism. In the migration cycle,
only the status of the process is transferred to the destination machine to continue
running.

The backup mechanism has similarities to other algorithms. This mechanism is a
combination of two mechanisms, pre-copywriter and lazy. Like the lazy algorithm, the
execution of the process on the destination machine continues immediately after the
migration decision. Unlike any algorithm, like a lazy mechanism, it only needs to
transfer at least a subset of the process state to the destination machine. The process
then sends a request to transfer the missed pages whenever it needs a page in the
source machine, taking precedence over the regular transfer of pages. Therefore, the
delay in using the post-copying algorithm, such as the lazy mechanism, is short.

Rough, J., & Gościński, A. (1998) refers to the RHODOS distributed operating
system, which has two purposes. The first is to support distributed systems for parallel
execution and load balancing, and the second is to compare different solutions to
problems with distributed operating systems. To this end, RHODOS, developed as a
flexible laboratory for distributed systems, has made process migration part of the
operating system design phase. RHODOS Migration Center is designed to
accommodate a variety of strategies. This event is confirmed by having process
migration management. Real transfer mechanisms are also part of the appropriate
kernel server. So lazy and direct copy mechanisms are part of the RHODOS
management space. This configuration allows for flexible execution and control of
many of the required strategies. Although this mechanism is not designed explicitly for
RHODOS, it has been quickly added to the operating system with the ability to manage
flexible memory in RHODOS.

4. Influence Dynamic and Interactive Events on Lazy Copy Functionality
The occurrence of dynamic and interactive nature in distributed macro-scale

systems can change the status of each of the two computational elements of origin
and destination and, consequently, the migratory process.

As stated in Formula 1, the immigrant candidate process can base on two vector
spaces, 𝑃𝑃&$ or the collection of process requirements from the source computational
element, and 𝑃𝑃&$, the set of standard requirements of the candidate migration process
from the computational element considered the destination. n traditional computing
systems, from the point of view of the load balancer, the inadequacy of each of the
𝑃𝑃&$collection members or the inability to provide the 𝑃𝑃&$Collection members cause the
process migration process to begin.

Also, in traditional computing systems, from the point of view of the load balancer,
if the destination computing element can provide all members of the 𝑃𝑃&$set to the
process candidate migration process, taking into account time and space constraints,
then the acceptability capability and continues to run the process.

In traditional computing systems, the lazy process migration does not collect
information about the status of either 𝑃𝑃&$ 	and	𝑃𝑃&$. In traditional computing systems, any
change in the state of the vector sets 𝑃𝑃&$and 𝑃𝑃&$After starting the lazy process; migration
is not considered because the load balancer is not active. In traditional computing
systems, at the moment of starting the process migration activity, the decision on the
implementation of the process migration activity, as well as the decision on the
destination computing element and the status of the descriptive parameters of the
source and destination computing element, is the load balancer and the set of
decisions made by the load balancer. This event leaves the lazy migration manager
lacking information about the decision-making process on migration. In computing
systems, the implementation of process migration-related activities is the responsibility
of the lazy process migration, so the load balancer is not activated and can not decide
based on changes in the status of parameters governing the process migration
process. In traditional computing systems, the lazy process migration, based on a set
of specific parameters defined by the load balancer, executes the process of
implementing activities related to process migration management.

In distributed Exascale systems, dynamic and interactive events can occur,
including the start-up and decision-making process on migration. This event causes
that in distributed Exascale systems, both load balancer and lazy process migration
management need to describe the process status in the source and destination
computational element.

In the lazy process migration mechanism, unlike other mechanisms used to manage
process migration, the status of the source and destination computing element is
described based on the requirements of the process. Following the requirements of
the process, the minimum amount of data transfer to start the execution of the
processing activity in the destination computational element.

The possibility of dynamic and interactive occurrence in distributed Exascale
systems allows vector sets describing the process requirements of the source and
destination computational element to be developed and rewritten according to Formula
4.
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃-"#$%$*1&3

(%)*(𝐺𝐺) = 〈J< 𝑃𝑃&! , … , 𝑃𝑃&" >K(𝑇𝑇, 𝐿𝐿, 𝐷𝐷, 𝐺𝐺), J< 𝑃𝑃'! , … , 𝑃𝑃'# >K(𝑇𝑇, 𝐿𝐿, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐺𝐺)〉 (4)
As can be seen in Formula 4, the candidate process changes state from an abstract

process to a process described in the global activity. This state is because, in
traditional computing systems, the load balancer considers the concept of process as
an abstract concept that the failure of one or more members of the collection set
𝑃𝑃&$Causes that The process requires the transfer and migration of a process. The load
balancer also considers the process concept in the destination computational element
as an abstract concept. It assumes that if the collection members 𝑃𝑃&$ are satisfied, then
the process can be executed in It has the computational element of the destination.
The load balancer also considers the concept of processing in the destination
computational element as an abstract concept and assumes that if the collection
members 𝑃𝑃&$are satisfied. In this case, the process can execute in the destination
computational element.

In distributed Exascale systems, the concept of the process defines as a concept
related to global activity. Each computational process defined in the distributed
Exascalesystem is part of global activity in that member processes are activities in
communication and interaction. The concept of process in distributed
Exascalesystems influences the functionality and events governing other member
global activity processes. Therefore, in distributed Exascalesystems, the concept of
the migratory process cannot be considered without considering other member
processes of global activity.

In Formula 4, This matter has caused the candidate migration process to be
considered a function of other processes. From the point of view of the lazy process
migration, the description of the migration candidate process and the process
requirements in the source computational element, and the process expectations of
the destination computational element depend on the needs of other member activity
processes.

In Formula 4, the candidate migration process concept is considered a process
based on two independent variables of time and dynamic and interactive event
occurrence. In distributed Exascalesystems, at any moment in implementing the
candidate migration process, the process can change the status of the process
descriptor parameters from the point of view of the system manager and the lazy
process migration element. This event allows the candidate migration process to
describes as a process based on an independent time variable. On the other hand, in
distributed Exascale systems, at any point in implementing a candidate migration
process, a dynamic and interactive event can occur and affect the descriptive
elements of the process. This event has also led to considering a dynamic and
interactive event occurrence independent variable to describe the status of a
candidate migration process.

In Formula 4, the concept of collecting vector descriptors of process requests from
the source computational element may also influence by the occurrence of a dynamic
and interactive event. From the point of view of the system manager, the lazy process
migration and the description of the processing requests from the computational
source element may change due to a dynamic and interactive event occurring or the
execution of the process migration activity. In other states, the lazy migration process
leads to new activity. By changing the independent variables, the collection of process
requirements from the computational source element may necessitate a review of the
process of process migration activities. Collection of descriptive requirements of
process requests based on independent variables constraint on response to process
requests for each of the requested sources, location constraint on response to process
requests, and the dependence of the process on the computational element of origin.
It also defines the dependencies and interactions of the process with other member
processes of the global activity. The occurrence of a dynamic and interactive event or
a change in the execution time of a candidate migration process may change each of
the four independent variable spaces describing the process requirements of the
source computational element. The occurrence of a dynamic and interactive event may
cause the temporal and spatial constraints governing the processing requests to
change in such a way. It is either impossible to change the location of the process and
the process of performing migration activities cancel, or need to implement new
process migration activities based on new time and space constraints.

The occurrence of a dynamic and interactive event may cause the set of
dependencies required by the process to respond to the source computational
element to change. This dependency change may define new dependencies to meet
the requirements of the process that did not exist at the time of the decision to start
migrating the process or cause a set of dependencies to meet the requirements of the
process. The process can consider a process migration candidate process.

A dynamic and interactive event may change the interaction and communication
between the process's migratory candidate process and other processes instead of
the global actuality of which the migration process is part. This change in interactions
and connections between the CPU candidate process and other national activity
member processes can violate the ability to select the process as a process skill
candidate process or cause the process to have the ability to select as a candidate
migration process.

The occurrence of a dynamic and interactive event may cause members of the
collection of processing requirements to change from the source computational
element. The occurrence of a dynamic and interactive event may lead to the creation
of vectors with a new type of demand source or violate vectors with an existing source
type of requirement. For this reason, members of the processing requirements
collection of the source computational element are also a function of two independent
time variables and dynamic and interactive events.

In Formula 4, collecting victory descriptors of process requests from the destination
computing element may also be influenced by the occurrence of a dynamic and
interactive event. From the point of view of the system manager and the lazy process
migration, the description of the processing requests from the destination computing
element may change due to a dynamic and interactive event occurring. On the other
hand, the process migration activity or the destination computing element cannot
execute the process and meet its requirements. Maybe by changing the independent
variables, the collection of process requirements from the destination computing
element necessitates a review of the process of process migration activities.

Collection of descriptive requirements of requests based on independent variables.
Time request for a response to request requests for each of the requested resources,
location of response to request requests, and the capability of the destination
computing element in responding. At the processor's request and consequently, the
global activity related to the process and the global activity of which the processor is
a part described. From the point of view of lazy process migration, when a process
transfers from the source computing element to the destination computing element, the
path of global activity changes. Redirection of global activities, in addition to affecting
the performance of the candidate migration process, also affects the implementation
of processes related to the candidate migration process. In addition to affecting the
processes that make up global activity, redirection of global activity also affects the
processes of other global activities related to global activity. These issues cause the
destination computational element's capability to be considered one of the constraints
and constraints affecting the process of process migration activity. From the point of
view of the lazy process migration and the constraints and requests of the source type,
the capability of the destination computational element concerning the global activity
should consider.

A dynamic and interactive event causes each of the elements affecting the vector
sets to describe the status of the computational element of origin and destination to
cancel the continuation of the process migration activity. The occurrence of a dynamic
and interactive event causes the need to start the process migration activity or develop
a definition to create a computational element description.

5. Exa-Lazy Copy
The lazy process migration operates based on describing the status of the source

and destination computational element based on the requirements of the process, so
it must be able to index (or indexes) when a dynamic and interactive event occurs.
Describe the needs and the changes made to them based on the occurrence of a
dynamic and interactive event. The distribution management element typically
manages the description of the processing requirements in the source computing
element. Changing the descriptor requirements of the process requirements in the
source computing element usually means deciding whether to activate the system
manager and the lazy process migration to process the process.

In the event of a dynamic and interactive event affecting the collection parameters
that describe the request requirements of the computational element of the process
migration activities cancel, there is a need for process migration. It is not or needs to
decide based on new parameters about the start of the migration activity. Changing
the parameters that describe the status of the process requirement of the source
computational element does not change the process of lazy process migration activity.
Only if the parameters describing the status of the process requirement from the
computational element change the performance of the lazy process migration, which
occurred after the decision and the start of the activities related to the process
migration, occur.

Dynamic and interactive change parameters affect the process requirements of the
source computational element. In this case, the source computing element can decide
on the continuation of the process migration activities based on the computational
element of the selected destination. It must be able to cancel the process of migration
activities or start the migration activity. Decide on new processes and cancel existing
processes. From the point of view of the lazy process migration, the occurrence of a
dynamic and interactive event after the start of the process migration activity in each
of the two computational elements of origin and destination means deciding on the
possibility of continuing the process migration process. The system manager cancels
migration-related activities. To this end, the process migration in the destination
computing element must be able to make decisions based on an indicator (or
indicators) about meeting the process space's current requirements that are not met
in the source computational element. The lazy process migration defines the vector of
the best Alpha approximation, representing the result of the quadratic vectors of the
resources allocated to the migratory process in the source computational element.

To create the vector of the best Alpha approximation Exa-Lazy process migration
mechanism creates the Request vector space, containing the quadratic vectors of the
resources allocated to the migrating process in the source computing element. In
traditional computing systems, the Request vector space has fix pattern. No events
occur in the Request space that changes the pattern of the migratory process

Ehsan Mousavi Khaneghah, et al.

179

descriptor parameters from the point of view of the system manager and the lazy
process migration element. This event allows the candidate migration process to
describes as a process based on an independent time variable. On the other hand, in
distributed Exascale systems, at any point in implementing a candidate migration
process, a dynamic and interactive event can occur and affect the descriptive
elements of the process. This event has also led to considering a dynamic and
interactive event occurrence independent variable to describe the status of a
candidate migration process.

In Formula 4, the concept of collecting vector descriptors of process requests from
the source computational element may also influence by the occurrence of a dynamic
and interactive event. From the point of view of the system manager, the lazy process
migration and the description of the processing requests from the computational
source element may change due to a dynamic and interactive event occurring or the
execution of the process migration activity. In other states, the lazy migration process
leads to new activity. By changing the independent variables, the collection of process
requirements from the computational source element may necessitate a review of the
process of process migration activities. Collection of descriptive requirements of
process requests based on independent variables constraint on response to process
requests for each of the requested sources, location constraint on response to process
requests, and the dependence of the process on the computational element of origin.
It also defines the dependencies and interactions of the process with other member
processes of the global activity. The occurrence of a dynamic and interactive event or
a change in the execution time of a candidate migration process may change each of
the four independent variable spaces describing the process requirements of the
source computational element. The occurrence of a dynamic and interactive event may
cause the temporal and spatial constraints governing the processing requests to
change in such a way. It is either impossible to change the location of the process and
the process of performing migration activities cancel, or need to implement new
process migration activities based on new time and space constraints.

The occurrence of a dynamic and interactive event may cause the set of
dependencies required by the process to respond to the source computational
element to change. This dependency change may define new dependencies to meet
the requirements of the process that did not exist at the time of the decision to start
migrating the process or cause a set of dependencies to meet the requirements of the
process. The process can consider a process migration candidate process.

A dynamic and interactive event may change the interaction and communication
between the process's migratory candidate process and other processes instead of
the global actuality of which the migration process is part. This change in interactions
and connections between the CPU candidate process and other national activity
member processes can violate the ability to select the process as a process skill
candidate process or cause the process to have the ability to select as a candidate
migration process.

The occurrence of a dynamic and interactive event may cause members of the
collection of processing requirements to change from the source computational
element. The occurrence of a dynamic and interactive event may lead to the creation
of vectors with a new type of demand source or violate vectors with an existing source
type of requirement. For this reason, members of the processing requirements
collection of the source computational element are also a function of two independent
time variables and dynamic and interactive events.

In Formula 4, collecting victory descriptors of process requests from the destination
computing element may also be influenced by the occurrence of a dynamic and
interactive event. From the point of view of the system manager and the lazy process
migration, the description of the processing requests from the destination computing
element may change due to a dynamic and interactive event occurring. On the other
hand, the process migration activity or the destination computing element cannot
execute the process and meet its requirements. Maybe by changing the independent
variables, the collection of process requirements from the destination computing
element necessitates a review of the process of process migration activities.

Collection of descriptive requirements of requests based on independent variables.
Time request for a response to request requests for each of the requested resources,
location of response to request requests, and the capability of the destination
computing element in responding. At the processor's request and consequently, the
global activity related to the process and the global activity of which the processor is
a part described. From the point of view of lazy process migration, when a process
transfers from the source computing element to the destination computing element, the
path of global activity changes. Redirection of global activities, in addition to affecting
the performance of the candidate migration process, also affects the implementation
of processes related to the candidate migration process. In addition to affecting the
processes that make up global activity, redirection of global activity also affects the
processes of other global activities related to global activity. These issues cause the
destination computational element's capability to be considered one of the constraints
and constraints affecting the process of process migration activity. From the point of
view of the lazy process migration and the constraints and requests of the source type,
the capability of the destination computational element concerning the global activity
should consider.

A dynamic and interactive event causes each of the elements affecting the vector
sets to describe the status of the computational element of origin and destination to
cancel the continuation of the process migration activity. The occurrence of a dynamic
and interactive event causes the need to start the process migration activity or develop
a definition to create a computational element description.

5. Exa-Lazy Copy
The lazy process migration operates based on describing the status of the source

and destination computational element based on the requirements of the process, so
it must be able to index (or indexes) when a dynamic and interactive event occurs.
Describe the needs and the changes made to them based on the occurrence of a
dynamic and interactive event. The distribution management element typically
manages the description of the processing requirements in the source computing
element. Changing the descriptor requirements of the process requirements in the
source computing element usually means deciding whether to activate the system
manager and the lazy process migration to process the process.

In the event of a dynamic and interactive event affecting the collection parameters
that describe the request requirements of the computational element of the process
migration activities cancel, there is a need for process migration. It is not or needs to
decide based on new parameters about the start of the migration activity. Changing
the parameters that describe the status of the process requirement of the source
computational element does not change the process of lazy process migration activity.
Only if the parameters describing the status of the process requirement from the
computational element change the performance of the lazy process migration, which
occurred after the decision and the start of the activities related to the process
migration, occur.

Dynamic and interactive change parameters affect the process requirements of the
source computational element. In this case, the source computing element can decide
on the continuation of the process migration activities based on the computational
element of the selected destination. It must be able to cancel the process of migration
activities or start the migration activity. Decide on new processes and cancel existing
processes. From the point of view of the lazy process migration, the occurrence of a
dynamic and interactive event after the start of the process migration activity in each
of the two computational elements of origin and destination means deciding on the
possibility of continuing the process migration process. The system manager cancels
migration-related activities. To this end, the process migration in the destination
computing element must be able to make decisions based on an indicator (or
indicators) about meeting the process space's current requirements that are not met
in the source computational element. The lazy process migration defines the vector of
the best Alpha approximation, representing the result of the quadratic vectors of the
resources allocated to the migratory process in the source computational element.

To create the vector of the best Alpha approximation Exa-Lazy process migration
mechanism creates the Request vector space, containing the quadratic vectors of the
resources allocated to the migrating process in the source computing element. In
traditional computing systems, the Request vector space has fix pattern. No events
occur in the Request space that changes the pattern of the migratory process

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

180

descriptor parameters from the point of view of the system manager and the lazy
process migration element. This event allows the candidate migration process to
describes as a process based on an independent time variable. On the other hand, in
distributed Exascale systems, at any point in implementing a candidate migration
process, a dynamic and interactive event can occur and affect the descriptive
elements of the process. This event has also led to considering a dynamic and
interactive event occurrence independent variable to describe the status of a
candidate migration process.

In Formula 4, the concept of collecting vector descriptors of process requests from
the source computational element may also influence by the occurrence of a dynamic
and interactive event. From the point of view of the system manager, the lazy process
migration and the description of the processing requests from the computational
source element may change due to a dynamic and interactive event occurring or the
execution of the process migration activity. In other states, the lazy migration process
leads to new activity. By changing the independent variables, the collection of process
requirements from the computational source element may necessitate a review of the
process of process migration activities. Collection of descriptive requirements of
process requests based on independent variables constraint on response to process
requests for each of the requested sources, location constraint on response to process
requests, and the dependence of the process on the computational element of origin.
It also defines the dependencies and interactions of the process with other member
processes of the global activity. The occurrence of a dynamic and interactive event or
a change in the execution time of a candidate migration process may change each of
the four independent variable spaces describing the process requirements of the
source computational element. The occurrence of a dynamic and interactive event may
cause the temporal and spatial constraints governing the processing requests to
change in such a way. It is either impossible to change the location of the process and
the process of performing migration activities cancel, or need to implement new
process migration activities based on new time and space constraints.

The occurrence of a dynamic and interactive event may cause the set of
dependencies required by the process to respond to the source computational
element to change. This dependency change may define new dependencies to meet
the requirements of the process that did not exist at the time of the decision to start
migrating the process or cause a set of dependencies to meet the requirements of the
process. The process can consider a process migration candidate process.

A dynamic and interactive event may change the interaction and communication
between the process's migratory candidate process and other processes instead of
the global actuality of which the migration process is part. This change in interactions
and connections between the CPU candidate process and other national activity
member processes can violate the ability to select the process as a process skill
candidate process or cause the process to have the ability to select as a candidate
migration process.

The occurrence of a dynamic and interactive event may cause members of the
collection of processing requirements to change from the source computational
element. The occurrence of a dynamic and interactive event may lead to the creation
of vectors with a new type of demand source or violate vectors with an existing source
type of requirement. For this reason, members of the processing requirements
collection of the source computational element are also a function of two independent
time variables and dynamic and interactive events.

In Formula 4, collecting victory descriptors of process requests from the destination
computing element may also be influenced by the occurrence of a dynamic and
interactive event. From the point of view of the system manager and the lazy process
migration, the description of the processing requests from the destination computing
element may change due to a dynamic and interactive event occurring. On the other
hand, the process migration activity or the destination computing element cannot
execute the process and meet its requirements. Maybe by changing the independent
variables, the collection of process requirements from the destination computing
element necessitates a review of the process of process migration activities.

Collection of descriptive requirements of requests based on independent variables.
Time request for a response to request requests for each of the requested resources,
location of response to request requests, and the capability of the destination
computing element in responding. At the processor's request and consequently, the
global activity related to the process and the global activity of which the processor is
a part described. From the point of view of lazy process migration, when a process
transfers from the source computing element to the destination computing element, the
path of global activity changes. Redirection of global activities, in addition to affecting
the performance of the candidate migration process, also affects the implementation
of processes related to the candidate migration process. In addition to affecting the
processes that make up global activity, redirection of global activity also affects the
processes of other global activities related to global activity. These issues cause the
destination computational element's capability to be considered one of the constraints
and constraints affecting the process of process migration activity. From the point of
view of the lazy process migration and the constraints and requests of the source type,
the capability of the destination computational element concerning the global activity
should consider.

A dynamic and interactive event causes each of the elements affecting the vector
sets to describe the status of the computational element of origin and destination to
cancel the continuation of the process migration activity. The occurrence of a dynamic
and interactive event causes the need to start the process migration activity or develop
a definition to create a computational element description.

5. Exa-Lazy Copy
The lazy process migration operates based on describing the status of the source

and destination computational element based on the requirements of the process, so
it must be able to index (or indexes) when a dynamic and interactive event occurs.
Describe the needs and the changes made to them based on the occurrence of a
dynamic and interactive event. The distribution management element typically
manages the description of the processing requirements in the source computing
element. Changing the descriptor requirements of the process requirements in the
source computing element usually means deciding whether to activate the system
manager and the lazy process migration to process the process.

In the event of a dynamic and interactive event affecting the collection parameters
that describe the request requirements of the computational element of the process
migration activities cancel, there is a need for process migration. It is not or needs to
decide based on new parameters about the start of the migration activity. Changing
the parameters that describe the status of the process requirement of the source
computational element does not change the process of lazy process migration activity.
Only if the parameters describing the status of the process requirement from the
computational element change the performance of the lazy process migration, which
occurred after the decision and the start of the activities related to the process
migration, occur.

Dynamic and interactive change parameters affect the process requirements of the
source computational element. In this case, the source computing element can decide
on the continuation of the process migration activities based on the computational
element of the selected destination. It must be able to cancel the process of migration
activities or start the migration activity. Decide on new processes and cancel existing
processes. From the point of view of the lazy process migration, the occurrence of a
dynamic and interactive event after the start of the process migration activity in each
of the two computational elements of origin and destination means deciding on the
possibility of continuing the process migration process. The system manager cancels
migration-related activities. To this end, the process migration in the destination
computing element must be able to make decisions based on an indicator (or
indicators) about meeting the process space's current requirements that are not met
in the source computational element. The lazy process migration defines the vector of
the best Alpha approximation, representing the result of the quadratic vectors of the
resources allocated to the migratory process in the source computational element.

To create the vector of the best Alpha approximation Exa-Lazy process migration
mechanism creates the Request vector space, containing the quadratic vectors of the
resources allocated to the migrating process in the source computing element. In
traditional computing systems, the Request vector space has fix pattern. No events
occur in the Request space that changes the pattern of the migratory process
requirements in the source computing element. The only conceivable event in the
Request space is the inability of the source computational element to respond to a
Request member or to fail to meet the requirements of a Request space member. In
distributed Exascalesystems, the Request space is a vector space that is a function of
time and dynamic and interactive events. To change the state of the Request vector
space and its constituent vectors., To define the Alpha vector, the Exa-Lazy process
migration assumes that based on the 𝑃𝑃&$vectors, the Request space can be considered
a subspace of the internal multiplication space of the 𝑃𝑃&$vectors, and the ideal vector
is the best Alpha approximation in the Request space. The best Alpha approximation
vector indicates that although a pattern governs the 𝑃𝑃&$vectors, the process request in
the source computational element is responsive. There is no need to transfer the
process from the source computational element based on the insane mechanism.

The possibility of defining the best Alpha approximation vector based on the 𝑃𝑃&$
Vectors is because the crazy process migration mechanism does not depend on the
size of the process. The vector generated by the best Alpha approximation is
independent of the process size and is a computable process for each candidate
migration process. The Request space represents the product of the 𝑃𝑃&$vectors, and
their constituent elements are the vectors that represent the request-response
scenarios. Each member of the Request space represents a template for responding
to the request.

Because the Request space is finite, each member is a pattern of using the
resources in the system with the transferor non-transfer of the process to execute the
process. Based on this makes, it is possible to consider the orthogonal base B =
={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} which represents each of the four sources locally and
globally. The orthogonal base ={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} describes the vectors that
act as vectors that generate process response scenarios. The orthogonal base
={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} uses both local resources to respond to the request and
transfers the request from the local level to the global level to use the resources of other
computational elements.

For a candidate migration process, the best Alpha approximation vector can be
calculated based on Formula 5.

Alpha = ∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|6 𝐵𝐵6)𝐵𝐵6	 (5)
As shown in Formula 25, the Alpha vector expresses the best approximation and

description of the status of the process requests answered in the computational
element. This approximation indicates that, regardless of the type of source requested
by the processor, what is the vector pattern for responding to process requests. In
Formula 5, the Beta vector is a vector of the Request space that represents the ability
to respond to the process in the local computational element without the need for
migration. The Beta vector is defined based on the internal multiplication space of the
𝑃𝑃&$vectors. It represents the scenarios for using local resources in the source
computational element, based on which the candidate migration requests can be
processed. System answered in the source computational element. The Beta vector is
the ideal vector for responding to process requests. If the process can provide
answers in the local computational element without process migration, it is time to
execute the Exa-Lazy or Lazy process migration. There is no need to reduce the time
to run a scientific and applied program. In Formula 5, Alpha should ideally be in Beta.
From the Exa-Lazy process migration perspective, a dynamic and interactive event
did not occur in the source computing element. From the Exa-Lazy process migration
perspective, the origin computing element responded to all requests related to the
migratory process. From the perspective of the Exa-Lazy process migration, the
effects of a dynamic and interactive event occurring on the performance of the source
computational element are such that it does not interfere with the process of
responding to the processing request.

Suppose the best Alpha approximation vector is not equal to the Beta vector. In that
case, the Alpha vector is the best approximation for the Beta vector by the Request
vectors, in which case the Beta-Alpha vector is perpendicular to any vector in the
Request vector space. The Beta-Alpha vector indicates that based on the subtraction
vector of acceptable vectors to respond to locally requested response scenarios, the
vector can respond to the request using scenarios using resources outside the source
computational element Immigrant candidate process.

Based on Formula 5, we can also calculate the vectors of the best Alpha
approximation and the response vector to the migrant candidate processing requests
in the destination computational element. Based on what is stated in formula 5, to
obtain the Alpha and Beta vectors in the destination computational element, the
Answer vector space can be defined based on the product of the multipliers 𝑃𝑃&$. Like
the Request vector space, this vector space contains possible scenarios for
responding to the process request in the destination computing element. Each
member of the Answer space represents a template for responding to the migrant
candidate process requests in the destination computing element.

Answer vector space, like Request vector space, is a finite space, and each
member has a pattern of using the resource in the system, considering the response
to part of the request in the source computational element or without considering the
response to part of the request Includes the source in the computational element. Is it
possible to define the orthogonal base γ ={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5}, which
represents each of the four sources locally and globally. In the orthogonal base γ, if
the response scenario to a part of the request is not used in the source computational
element, then the values of the bases 𝑝𝑝5 ، 𝑚𝑚5،𝑓𝑓5 and 𝐼𝐼𝑂𝑂5Are zero, and the bases
mentioned in the description of the response scenarios to the process request.

In the destination computing element, the Beta vector means that the process
enters into the destination computing element in responding to all (or part) of the
candidate's migration request. This event requires the reprocessing of the process,
including the return of the process that has not occurred to the computational element
of the origin or other computational element. The beta vector is the ideal state to
respond to the request of a candidate migration process in the destination
computational element. In the Exa-Lazy process migration, like Lazy, the definition of
the computational element is based on the description of the resources requested by
the process, so the destination computational element is considered the ideal
destination computational element from the perspective of the Exa-Lazy process
migration element. It can respond to the process requirements vector, whether the
source computing element has met any process requirements or part of it has been
met by the source computing element.

According to the definition of the best approximation vectors for the source and
destination computational element, the function of the Exa-Lazy process migration can
be rewritten based on Formula 6 to Formula 3.

𝑓𝑓(𝐸𝐸𝐸𝐸𝐵𝐵𝐸𝐸𝐵𝐵𝐸𝐸𝐸𝐸):∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|6 𝐵𝐵6)𝐵𝐵6 →⏞
(."5*#+",-.,."5*&$/-,,%)*)

∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵a |6: 𝛾𝛾)𝛾𝛾6: (6)
As shown in Formula 3, the Exa-Lazy process migration element must be able to

combine the two vectors of the best approximation of the source computing element
and the destination computational element. These two vectors consider page size, the
number of pages transferred, and the inability to meet the requirements of the
candidate migration process in the source computational element. The destination
computational element Must have the best approximation of the candidate's process
requirements space. Formula 6 is a rewrite of Formula 3 based on the concept of
mapping. Considering the vector concept is the best approximation for each of the
four-vector spaces describing the computational element of origin and destination.

As can be seen in Formula 6, the mapping condition of the two vector spaces is the
best approximation to each other, derived from the exceptional capabilities and
features of the traditional Lazy process migration mechanism. In the Lazy process
migration mechanism, the page size and the number of page transfers should keep to
a minimum. Unlike other process migration mechanisms, the Lazy Copy process
reduces the page transfer rate by moving the most miniature altered pages from the
source-to-destination computing element. On the other hand, in the Lazy process
migration mechanism, one of the essential features is allocating time to the migrating
candidate process. in traditional computing systems, the concept of allocated time
emphasizes the concept of allocated CPU time. In distributed Exascale systems, the
concept of time allocated to each type of source emphasizes the process requirements

Ehsan Mousavi Khaneghah, et al.

181

requirements in the source computing element. The only conceivable event in the
Request space is the inability of the source computational element to respond to a
Request member or to fail to meet the requirements of a Request space member. In
distributed Exascalesystems, the Request space is a vector space that is a function of
time and dynamic and interactive events. To change the state of the Request vector
space and its constituent vectors., To define the Alpha vector, the Exa-Lazy process
migration assumes that based on the 𝑃𝑃&$vectors, the Request space can be considered
a subspace of the internal multiplication space of the 𝑃𝑃&$vectors, and the ideal vector
is the best Alpha approximation in the Request space. The best Alpha approximation
vector indicates that although a pattern governs the 𝑃𝑃&$vectors, the process request in
the source computational element is responsive. There is no need to transfer the
process from the source computational element based on the insane mechanism.

The possibility of defining the best Alpha approximation vector based on the 𝑃𝑃&$
Vectors is because the crazy process migration mechanism does not depend on the
size of the process. The vector generated by the best Alpha approximation is
independent of the process size and is a computable process for each candidate
migration process. The Request space represents the product of the 𝑃𝑃&$vectors, and
their constituent elements are the vectors that represent the request-response
scenarios. Each member of the Request space represents a template for responding
to the request.

Because the Request space is finite, each member is a pattern of using the
resources in the system with the transferor non-transfer of the process to execute the
process. Based on this makes, it is possible to consider the orthogonal base B =
={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} which represents each of the four sources locally and
globally. The orthogonal base ={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} describes the vectors that
act as vectors that generate process response scenarios. The orthogonal base
={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} uses both local resources to respond to the request and
transfers the request from the local level to the global level to use the resources of other
computational elements.

For a candidate migration process, the best Alpha approximation vector can be
calculated based on Formula 5.

Alpha = ∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|6 𝐵𝐵6)𝐵𝐵6	 (5)
As shown in Formula 25, the Alpha vector expresses the best approximation and

description of the status of the process requests answered in the computational
element. This approximation indicates that, regardless of the type of source requested
by the processor, what is the vector pattern for responding to process requests. In
Formula 5, the Beta vector is a vector of the Request space that represents the ability
to respond to the process in the local computational element without the need for
migration. The Beta vector is defined based on the internal multiplication space of the
𝑃𝑃&$vectors. It represents the scenarios for using local resources in the source
computational element, based on which the candidate migration requests can be
processed. System answered in the source computational element. The Beta vector is
the ideal vector for responding to process requests. If the process can provide
answers in the local computational element without process migration, it is time to
execute the Exa-Lazy or Lazy process migration. There is no need to reduce the time
to run a scientific and applied program. In Formula 5, Alpha should ideally be in Beta.
From the Exa-Lazy process migration perspective, a dynamic and interactive event
did not occur in the source computing element. From the Exa-Lazy process migration
perspective, the origin computing element responded to all requests related to the
migratory process. From the perspective of the Exa-Lazy process migration, the
effects of a dynamic and interactive event occurring on the performance of the source
computational element are such that it does not interfere with the process of
responding to the processing request.

Suppose the best Alpha approximation vector is not equal to the Beta vector. In that
case, the Alpha vector is the best approximation for the Beta vector by the Request
vectors, in which case the Beta-Alpha vector is perpendicular to any vector in the
Request vector space. The Beta-Alpha vector indicates that based on the subtraction
vector of acceptable vectors to respond to locally requested response scenarios, the
vector can respond to the request using scenarios using resources outside the source
computational element Immigrant candidate process.

Based on Formula 5, we can also calculate the vectors of the best Alpha
approximation and the response vector to the migrant candidate processing requests
in the destination computational element. Based on what is stated in formula 5, to
obtain the Alpha and Beta vectors in the destination computational element, the
Answer vector space can be defined based on the product of the multipliers 𝑃𝑃&$. Like
the Request vector space, this vector space contains possible scenarios for
responding to the process request in the destination computing element. Each
member of the Answer space represents a template for responding to the migrant
candidate process requests in the destination computing element.

Answer vector space, like Request vector space, is a finite space, and each
member has a pattern of using the resource in the system, considering the response
to part of the request in the source computational element or without considering the
response to part of the request Includes the source in the computational element. Is it
possible to define the orthogonal base γ ={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5}, which
represents each of the four sources locally and globally. In the orthogonal base γ, if
the response scenario to a part of the request is not used in the source computational
element, then the values of the bases 𝑝𝑝5 ، 𝑚𝑚5،𝑓𝑓5 and 𝐼𝐼𝑂𝑂5Are zero, and the bases
mentioned in the description of the response scenarios to the process request.

In the destination computing element, the Beta vector means that the process
enters into the destination computing element in responding to all (or part) of the
candidate's migration request. This event requires the reprocessing of the process,
including the return of the process that has not occurred to the computational element
of the origin or other computational element. The beta vector is the ideal state to
respond to the request of a candidate migration process in the destination
computational element. In the Exa-Lazy process migration, like Lazy, the definition of
the computational element is based on the description of the resources requested by
the process, so the destination computational element is considered the ideal
destination computational element from the perspective of the Exa-Lazy process
migration element. It can respond to the process requirements vector, whether the
source computing element has met any process requirements or part of it has been
met by the source computing element.

According to the definition of the best approximation vectors for the source and
destination computational element, the function of the Exa-Lazy process migration can
be rewritten based on Formula 6 to Formula 3.

𝑓𝑓(𝐸𝐸𝐸𝐸𝐵𝐵𝐸𝐸𝐵𝐵𝐸𝐸𝐸𝐸):∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|6 𝐵𝐵6)𝐵𝐵6 →⏞
(."5*#+",-.,."5*&$/-,,%)*)

∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵a |6: 𝛾𝛾)𝛾𝛾6: (6)
As shown in Formula 3, the Exa-Lazy process migration element must be able to

combine the two vectors of the best approximation of the source computing element
and the destination computational element. These two vectors consider page size, the
number of pages transferred, and the inability to meet the requirements of the
candidate migration process in the source computational element. The destination
computational element Must have the best approximation of the candidate's process
requirements space. Formula 6 is a rewrite of Formula 3 based on the concept of
mapping. Considering the vector concept is the best approximation for each of the
four-vector spaces describing the computational element of origin and destination.

As can be seen in Formula 6, the mapping condition of the two vector spaces is the
best approximation to each other, derived from the exceptional capabilities and
features of the traditional Lazy process migration mechanism. In the Lazy process
migration mechanism, the page size and the number of page transfers should keep to
a minimum. Unlike other process migration mechanisms, the Lazy Copy process
reduces the page transfer rate by moving the most miniature altered pages from the
source-to-destination computing element. On the other hand, in the Lazy process
migration mechanism, one of the essential features is allocating time to the migrating
candidate process. in traditional computing systems, the concept of allocated time
emphasizes the concept of allocated CPU time. In distributed Exascale systems, the
concept of time allocated to each type of source emphasizes the process requirements

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

182

requirements in the source computing element. The only conceivable event in the
Request space is the inability of the source computational element to respond to a
Request member or to fail to meet the requirements of a Request space member. In
distributed Exascalesystems, the Request space is a vector space that is a function of
time and dynamic and interactive events. To change the state of the Request vector
space and its constituent vectors., To define the Alpha vector, the Exa-Lazy process
migration assumes that based on the 𝑃𝑃&$vectors, the Request space can be considered
a subspace of the internal multiplication space of the 𝑃𝑃&$vectors, and the ideal vector
is the best Alpha approximation in the Request space. The best Alpha approximation
vector indicates that although a pattern governs the 𝑃𝑃&$vectors, the process request in
the source computational element is responsive. There is no need to transfer the
process from the source computational element based on the insane mechanism.

The possibility of defining the best Alpha approximation vector based on the 𝑃𝑃&$
Vectors is because the crazy process migration mechanism does not depend on the
size of the process. The vector generated by the best Alpha approximation is
independent of the process size and is a computable process for each candidate
migration process. The Request space represents the product of the 𝑃𝑃&$vectors, and
their constituent elements are the vectors that represent the request-response
scenarios. Each member of the Request space represents a template for responding
to the request.

Because the Request space is finite, each member is a pattern of using the
resources in the system with the transferor non-transfer of the process to execute the
process. Based on this makes, it is possible to consider the orthogonal base B =
={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} which represents each of the four sources locally and
globally. The orthogonal base ={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} describes the vectors that
act as vectors that generate process response scenarios. The orthogonal base
={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5} uses both local resources to respond to the request and
transfers the request from the local level to the global level to use the resources of other
computational elements.

For a candidate migration process, the best Alpha approximation vector can be
calculated based on Formula 5.

Alpha = ∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|6 𝐵𝐵6)𝐵𝐵6	 (5)
As shown in Formula 25, the Alpha vector expresses the best approximation and

description of the status of the process requests answered in the computational
element. This approximation indicates that, regardless of the type of source requested
by the processor, what is the vector pattern for responding to process requests. In
Formula 5, the Beta vector is a vector of the Request space that represents the ability
to respond to the process in the local computational element without the need for
migration. The Beta vector is defined based on the internal multiplication space of the
𝑃𝑃&$vectors. It represents the scenarios for using local resources in the source
computational element, based on which the candidate migration requests can be
processed. System answered in the source computational element. The Beta vector is
the ideal vector for responding to process requests. If the process can provide
answers in the local computational element without process migration, it is time to
execute the Exa-Lazy or Lazy process migration. There is no need to reduce the time
to run a scientific and applied program. In Formula 5, Alpha should ideally be in Beta.
From the Exa-Lazy process migration perspective, a dynamic and interactive event
did not occur in the source computing element. From the Exa-Lazy process migration
perspective, the origin computing element responded to all requests related to the
migratory process. From the perspective of the Exa-Lazy process migration, the
effects of a dynamic and interactive event occurring on the performance of the source
computational element are such that it does not interfere with the process of
responding to the processing request.

Suppose the best Alpha approximation vector is not equal to the Beta vector. In that
case, the Alpha vector is the best approximation for the Beta vector by the Request
vectors, in which case the Beta-Alpha vector is perpendicular to any vector in the
Request vector space. The Beta-Alpha vector indicates that based on the subtraction
vector of acceptable vectors to respond to locally requested response scenarios, the
vector can respond to the request using scenarios using resources outside the source
computational element Immigrant candidate process.

Based on Formula 5, we can also calculate the vectors of the best Alpha
approximation and the response vector to the migrant candidate processing requests
in the destination computational element. Based on what is stated in formula 5, to
obtain the Alpha and Beta vectors in the destination computational element, the
Answer vector space can be defined based on the product of the multipliers 𝑃𝑃&$. Like
the Request vector space, this vector space contains possible scenarios for
responding to the process request in the destination computing element. Each
member of the Answer space represents a template for responding to the migrant
candidate process requests in the destination computing element.

Answer vector space, like Request vector space, is a finite space, and each
member has a pattern of using the resource in the system, considering the response
to part of the request in the source computational element or without considering the
response to part of the request Includes the source in the computational element. Is it
possible to define the orthogonal base γ ={𝑓𝑓4 , 𝑓𝑓5, 𝐼𝐼𝑂𝑂4 , 𝐼𝐼𝑂𝑂5, 𝑚𝑚4 , 𝑚𝑚5, 𝑝𝑝4 , 𝑝𝑝5}, which
represents each of the four sources locally and globally. In the orthogonal base γ, if
the response scenario to a part of the request is not used in the source computational
element, then the values of the bases 𝑝𝑝5 ، 𝑚𝑚5،𝑓𝑓5 and 𝐼𝐼𝑂𝑂5Are zero, and the bases
mentioned in the description of the response scenarios to the process request.

In the destination computing element, the Beta vector means that the process
enters into the destination computing element in responding to all (or part) of the
candidate's migration request. This event requires the reprocessing of the process,
including the return of the process that has not occurred to the computational element
of the origin or other computational element. The beta vector is the ideal state to
respond to the request of a candidate migration process in the destination
computational element. In the Exa-Lazy process migration, like Lazy, the definition of
the computational element is based on the description of the resources requested by
the process, so the destination computational element is considered the ideal
destination computational element from the perspective of the Exa-Lazy process
migration element. It can respond to the process requirements vector, whether the
source computing element has met any process requirements or part of it has been
met by the source computing element.

According to the definition of the best approximation vectors for the source and
destination computational element, the function of the Exa-Lazy process migration can
be rewritten based on Formula 6 to Formula 3.

𝑓𝑓(𝐸𝐸𝐸𝐸𝐵𝐵𝐸𝐸𝐵𝐵𝐸𝐸𝐸𝐸):∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵|6 𝐵𝐵6)𝐵𝐵6 →⏞
(."5*#+",-.,."5*&$/-,,%)*)

∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵a |6: 𝛾𝛾)𝛾𝛾6: (6)
As shown in Formula 3, the Exa-Lazy process migration element must be able to

combine the two vectors of the best approximation of the source computing element
and the destination computational element. These two vectors consider page size, the
number of pages transferred, and the inability to meet the requirements of the
candidate migration process in the source computational element. The destination
computational element Must have the best approximation of the candidate's process
requirements space. Formula 6 is a rewrite of Formula 3 based on the concept of
mapping. Considering the vector concept is the best approximation for each of the
four-vector spaces describing the computational element of origin and destination.

As can be seen in Formula 6, the mapping condition of the two vector spaces is the
best approximation to each other, derived from the exceptional capabilities and
features of the traditional Lazy process migration mechanism. In the Lazy process
migration mechanism, the page size and the number of page transfers should keep to
a minimum. Unlike other process migration mechanisms, the Lazy Copy process
reduces the page transfer rate by moving the most miniature altered pages from the
source-to-destination computing element. On the other hand, in the Lazy process
migration mechanism, one of the essential features is allocating time to the migrating
candidate process. in traditional computing systems, the concept of allocated time
emphasizes the concept of allocated CPU time. In distributed Exascale systems, the
concept of time allocated to each type of source emphasizes the process requirements
that are not answered by the source computing element and passed to the destination
computing element for the response.

As can be seen in Formula 6, if the vector of the best Alpha approximation in the
source element is equal to the Beta vector, the result of Formula 6 mapping is the
mapping of the response space to the requirements of the candidate process. It results
from responding to processing requests in the destination computing element.
Similarly, it can show that if the vector of the best approximation of Alpha in the
destination computational element is equal to the Beta vector, the mapping result
necessarily leads to the completion of the process execution process in the destination
computational element.

The process concept is not considered abstract or part of global activity in
distributed Exascale systems. Considering the process as part of a global activity
allows the process to have a set of interactions and connections between processes
with other member processes of the global activity. This event makes the concept of
Candidate Process Migration Requirements in distributed Exascalesystems in need of
development more than traditional systems. Part of the requirements of the candidate
migration process in distributed Exascalesystems is due to the requirements of the
process and part of the interactions and communications and the definition of the
process in the context of global activity. With this in mind, the definition of a candidate
immigration process from the perspective of the migration management element of Exa
Lazy processes can extend from Formula 1 to Formula 7.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$(𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃, 𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃) = d
〈𝑃𝑃&!0 , … , 𝑃𝑃&"0

	〉 〈𝑃𝑃&!0 , … , 𝑃𝑃&"0
	〉

〈𝑃𝑃&!1 , … , 𝑃𝑃&"1
	〉 〈𝑃𝑃&!1 , … , 𝑃𝑃&"1

	〉e
;<*#,

(%)*

 (7)

As can be seen in Formula 7, the definition of the candidate's process space
requirement is based on a 2 * 2 matrix whose first line describes the computational
element of origin and destination based on the requirements of the process, and the
second line describes the element. Origin and destination calculations are based on
the requirements of the process definition in the global activity. Each process matrix
element describing the candidate migration process is in the form of a vector set. Each
member of the collection defining each row indicates the extent to which the process
needs a specific resource in the source or destination computational element based
on the process need or the defined need arising from the definition of the process in
the global activity. As with Formula 1, classification of sources can provide for Formula
7, and a formula similar to Formula 2 can provide. The candidate process descriptor
matrix is defined based on two variables of time and event. In traditional computing
systems, the status of the two computational elements of origin and destination is
described based on the requirements of the candidate migration process. The length
of the process migration process does not change.

The system manager, t = Zeta, migrates processes based on the information
received about the process requirements that the source computing element cannot
respond to requests. The system manager, based on the information received by the
user in Process Requirements Through application tools such as PBS, finds a
destination computing element that can meet the processing requirements of a
process migration candidate. Then, by calling the Lazy Process migration, process
migration activities begin. In traditional computing systems, neither of the two elements
of distribution management and lazy process migration management collects the
status of changes made to the process requirements and consequently describes the
source and destination computational element. They do not represent information and
assume that the information collected at t = Zeta is valid until the end of the migration
process. This event is even though in Exascale systems distributed at any point in
implementing process migration activities, the possibility of a dynamic and interactive
event occurring in the candidate migration process element. There are requirements
for this element and, consequently, a description of the source and destination
computational element.

As shown in Figure 1, the process is usually in the normal state at the moment t =
Zeta. Failure to respond to the process request in the computational element changes
the process to the migration state and passes the executable program code. Based
on the lazy process migration mechanism, attempts to transfer memory pages. In
distributed Exascale systems, a dynamic and interactive event can also occur in
addition to the process's normal state, leading to a change in the status of the process
from the conventional process to the candidate migration process. Be considered a
factor in changing the status of the process from the conventional process to the
candidate migration process.

In distributed Exascalesystems, the occurrence of a dynamic and interactive event
may also change the status of the process that is unable to respond to the process
request in the computational element. This change may cause the current state of the
inability of the source computational element to remain at the request of the process.
The occurrence of a dynamic and interactive event eliminates the need for the
computational element's process and changes the status to normal. In distributed
Exascalesystems, dynamic and interactive event occurrences may also affect the
status of the migrating process, which may cause the destination computing element
to be unable to respond to the request. In this case, the description of the destination
computational element has changed from the point of view of the process
requirements, and the description of the status of the ability to respond to the request
is not. In this situation, the process migration activity of the two situations of returning
to the source computing element or calling the system manager and re-selecting the
destination element based on the new situation can be imagined and considered.

On the other hand, the occurrence of a dynamic and interactive event may change
the status of the immigrant candidate's process requirement. One can either return to
the source computing element or call the distribution management element. Load and
re-select the destination element. A dynamic and interactive event may also affect the
page transfers during the migration process. The page transfer pattern between the
source and destination computational elements does not follow the lazy process
migration mechanism. In this case, the Exa-Lazy process migration element must be
able to change the mechanism according to changes in the page transfer pattern.

In Formula 7, the candidate migration process describes a process based on two
independent variables, page and time. The time-independent variable involves
executing activities that change the candidate migration process, and transfer refers
to implementing process-related activities. Considering two independent variables of
time and page allows the Exa-Lazy process migration to be aware of the status of the
computational elements of origin, destination, and changes in the global activity of
which the migratory process is a part.

Ehsan Mousavi Khaneghah, et al.

183

that are not answered by the source computing element and passed to the destination
computing element for the response.

As can be seen in Formula 6, if the vector of the best Alpha approximation in the
source element is equal to the Beta vector, the result of Formula 6 mapping is the
mapping of the response space to the requirements of the candidate process. It results
from responding to processing requests in the destination computing element.
Similarly, it can show that if the vector of the best approximation of Alpha in the
destination computational element is equal to the Beta vector, the mapping result
necessarily leads to the completion of the process execution process in the destination
computational element.

The process concept is not considered abstract or part of global activity in
distributed Exascale systems. Considering the process as part of a global activity
allows the process to have a set of interactions and connections between processes
with other member processes of the global activity. This event makes the concept of
Candidate Process Migration Requirements in distributed Exascalesystems in need of
development more than traditional systems. Part of the requirements of the candidate
migration process in distributed Exascalesystems is due to the requirements of the
process and part of the interactions and communications and the definition of the
process in the context of global activity. With this in mind, the definition of a candidate
immigration process from the perspective of the migration management element of Exa
Lazy processes can extend from Formula 1 to Formula 7.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$(𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃, 𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃) = d
〈𝑃𝑃&!0 , … , 𝑃𝑃&"0

	〉 〈𝑃𝑃&!0 , … , 𝑃𝑃&"0
	〉

〈𝑃𝑃&!1 , … , 𝑃𝑃&"1
	〉 〈𝑃𝑃&!1 , … , 𝑃𝑃&"1

	〉e
;<*#,

(%)*

 (7)

As can be seen in Formula 7, the definition of the candidate's process space
requirement is based on a 2 * 2 matrix whose first line describes the computational
element of origin and destination based on the requirements of the process, and the
second line describes the element. Origin and destination calculations are based on
the requirements of the process definition in the global activity. Each process matrix
element describing the candidate migration process is in the form of a vector set. Each
member of the collection defining each row indicates the extent to which the process
needs a specific resource in the source or destination computational element based
on the process need or the defined need arising from the definition of the process in
the global activity. As with Formula 1, classification of sources can provide for Formula
7, and a formula similar to Formula 2 can provide. The candidate process descriptor
matrix is defined based on two variables of time and event. In traditional computing
systems, the status of the two computational elements of origin and destination is
described based on the requirements of the candidate migration process. The length
of the process migration process does not change.

The system manager, t = Zeta, migrates processes based on the information
received about the process requirements that the source computing element cannot
respond to requests. The system manager, based on the information received by the
user in Process Requirements Through application tools such as PBS, finds a
destination computing element that can meet the processing requirements of a
process migration candidate. Then, by calling the Lazy Process migration, process
migration activities begin. In traditional computing systems, neither of the two elements
of distribution management and lazy process migration management collects the
status of changes made to the process requirements and consequently describes the
source and destination computational element. They do not represent information and
assume that the information collected at t = Zeta is valid until the end of the migration
process. This event is even though in Exascale systems distributed at any point in
implementing process migration activities, the possibility of a dynamic and interactive
event occurring in the candidate migration process element. There are requirements
for this element and, consequently, a description of the source and destination
computational element.

As shown in Figure 1, the process is usually in the normal state at the moment t =
Zeta. Failure to respond to the process request in the computational element changes
the process to the migration state and passes the executable program code. Based
on the lazy process migration mechanism, attempts to transfer memory pages. In
distributed Exascale systems, a dynamic and interactive event can also occur in
addition to the process's normal state, leading to a change in the status of the process
from the conventional process to the candidate migration process. Be considered a
factor in changing the status of the process from the conventional process to the
candidate migration process.

In distributed Exascalesystems, the occurrence of a dynamic and interactive event
may also change the status of the process that is unable to respond to the process
request in the computational element. This change may cause the current state of the
inability of the source computational element to remain at the request of the process.
The occurrence of a dynamic and interactive event eliminates the need for the
computational element's process and changes the status to normal. In distributed
Exascalesystems, dynamic and interactive event occurrences may also affect the
status of the migrating process, which may cause the destination computing element
to be unable to respond to the request. In this case, the description of the destination
computational element has changed from the point of view of the process
requirements, and the description of the status of the ability to respond to the request
is not. In this situation, the process migration activity of the two situations of returning
to the source computing element or calling the system manager and re-selecting the
destination element based on the new situation can be imagined and considered.

On the other hand, the occurrence of a dynamic and interactive event may change
the status of the immigrant candidate's process requirement. One can either return to
the source computing element or call the distribution management element. Load and
re-select the destination element. A dynamic and interactive event may also affect the
page transfers during the migration process. The page transfer pattern between the
source and destination computational elements does not follow the lazy process
migration mechanism. In this case, the Exa-Lazy process migration element must be
able to change the mechanism according to changes in the page transfer pattern.

In Formula 7, the candidate migration process describes a process based on two
independent variables, page and time. The time-independent variable involves
executing activities that change the candidate migration process, and transfer refers
to implementing process-related activities. Considering two independent variables of
time and page allows the Exa-Lazy process migration to be aware of the status of the
computational elements of origin, destination, and changes in the global activity of
which the migratory process is a part.

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

184

Fig. 1. Description of the functional status of the candidate
migration process in the Exa-Lazy process migration

that are not answered by the source computing element and passed to the destination
computing element for the response.

As can be seen in Formula 6, if the vector of the best Alpha approximation in the
source element is equal to the Beta vector, the result of Formula 6 mapping is the
mapping of the response space to the requirements of the candidate process. It results
from responding to processing requests in the destination computing element.
Similarly, it can show that if the vector of the best approximation of Alpha in the
destination computational element is equal to the Beta vector, the mapping result
necessarily leads to the completion of the process execution process in the destination
computational element.

The process concept is not considered abstract or part of global activity in
distributed Exascale systems. Considering the process as part of a global activity
allows the process to have a set of interactions and connections between processes
with other member processes of the global activity. This event makes the concept of
Candidate Process Migration Requirements in distributed Exascalesystems in need of
development more than traditional systems. Part of the requirements of the candidate
migration process in distributed Exascalesystems is due to the requirements of the
process and part of the interactions and communications and the definition of the
process in the context of global activity. With this in mind, the definition of a candidate
immigration process from the perspective of the migration management element of Exa
Lazy processes can extend from Formula 1 to Formula 7.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$(𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃, 𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃) = d
〈𝑃𝑃&!0 , … , 𝑃𝑃&"0

	〉 〈𝑃𝑃&!0 , … , 𝑃𝑃&"0
	〉

〈𝑃𝑃&!1 , … , 𝑃𝑃&"1
	〉 〈𝑃𝑃&!1 , … , 𝑃𝑃&"1

	〉e
;<*#,

(%)*

 (7)

As can be seen in Formula 7, the definition of the candidate's process space
requirement is based on a 2 * 2 matrix whose first line describes the computational
element of origin and destination based on the requirements of the process, and the
second line describes the element. Origin and destination calculations are based on
the requirements of the process definition in the global activity. Each process matrix
element describing the candidate migration process is in the form of a vector set. Each
member of the collection defining each row indicates the extent to which the process
needs a specific resource in the source or destination computational element based
on the process need or the defined need arising from the definition of the process in
the global activity. As with Formula 1, classification of sources can provide for Formula
7, and a formula similar to Formula 2 can provide. The candidate process descriptor
matrix is defined based on two variables of time and event. In traditional computing
systems, the status of the two computational elements of origin and destination is
described based on the requirements of the candidate migration process. The length
of the process migration process does not change.

The system manager, t = Zeta, migrates processes based on the information
received about the process requirements that the source computing element cannot
respond to requests. The system manager, based on the information received by the
user in Process Requirements Through application tools such as PBS, finds a
destination computing element that can meet the processing requirements of a
process migration candidate. Then, by calling the Lazy Process migration, process
migration activities begin. In traditional computing systems, neither of the two elements
of distribution management and lazy process migration management collects the
status of changes made to the process requirements and consequently describes the
source and destination computational element. They do not represent information and
assume that the information collected at t = Zeta is valid until the end of the migration
process. This event is even though in Exascale systems distributed at any point in
implementing process migration activities, the possibility of a dynamic and interactive
event occurring in the candidate migration process element. There are requirements
for this element and, consequently, a description of the source and destination
computational element.

As shown in Figure 1, the process is usually in the normal state at the moment t =
Zeta. Failure to respond to the process request in the computational element changes
the process to the migration state and passes the executable program code. Based
on the lazy process migration mechanism, attempts to transfer memory pages. In
distributed Exascale systems, a dynamic and interactive event can also occur in
addition to the process's normal state, leading to a change in the status of the process
from the conventional process to the candidate migration process. Be considered a
factor in changing the status of the process from the conventional process to the
candidate migration process.

In distributed Exascalesystems, the occurrence of a dynamic and interactive event
may also change the status of the process that is unable to respond to the process
request in the computational element. This change may cause the current state of the
inability of the source computational element to remain at the request of the process.
The occurrence of a dynamic and interactive event eliminates the need for the
computational element's process and changes the status to normal. In distributed
Exascalesystems, dynamic and interactive event occurrences may also affect the
status of the migrating process, which may cause the destination computing element
to be unable to respond to the request. In this case, the description of the destination
computational element has changed from the point of view of the process
requirements, and the description of the status of the ability to respond to the request
is not. In this situation, the process migration activity of the two situations of returning
to the source computing element or calling the system manager and re-selecting the
destination element based on the new situation can be imagined and considered.

On the other hand, the occurrence of a dynamic and interactive event may change
the status of the immigrant candidate's process requirement. One can either return to
the source computing element or call the distribution management element. Load and
re-select the destination element. A dynamic and interactive event may also affect the
page transfers during the migration process. The page transfer pattern between the
source and destination computational elements does not follow the lazy process
migration mechanism. In this case, the Exa-Lazy process migration element must be
able to change the mechanism according to changes in the page transfer pattern.

In Formula 7, the candidate migration process describes a process based on two
independent variables, page and time. The time-independent variable involves
executing activities that change the candidate migration process, and transfer refers
to implementing process-related activities. Considering two independent variables of
time and page allows the Exa-Lazy process migration to be aware of the status of the
computational elements of origin, destination, and changes in the global activity of
which the migratory process is a part.

that are not answered by the source computing element and passed to the destination
computing element for the response.

As can be seen in Formula 6, if the vector of the best Alpha approximation in the
source element is equal to the Beta vector, the result of Formula 6 mapping is the
mapping of the response space to the requirements of the candidate process. It results
from responding to processing requests in the destination computing element.
Similarly, it can show that if the vector of the best approximation of Alpha in the
destination computational element is equal to the Beta vector, the mapping result
necessarily leads to the completion of the process execution process in the destination
computational element.

The process concept is not considered abstract or part of global activity in
distributed Exascale systems. Considering the process as part of a global activity
allows the process to have a set of interactions and connections between processes
with other member processes of the global activity. This event makes the concept of
Candidate Process Migration Requirements in distributed Exascalesystems in need of
development more than traditional systems. Part of the requirements of the candidate
migration process in distributed Exascalesystems is due to the requirements of the
process and part of the interactions and communications and the definition of the
process in the context of global activity. With this in mind, the definition of a candidate
immigration process from the perspective of the migration management element of Exa
Lazy processes can extend from Formula 1 to Formula 7.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$(𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃, 𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃) = d
〈𝑃𝑃&!0 , … , 𝑃𝑃&"0

	〉 〈𝑃𝑃&!0 , … , 𝑃𝑃&"0
	〉

〈𝑃𝑃&!1 , … , 𝑃𝑃&"1
	〉 〈𝑃𝑃&!1 , … , 𝑃𝑃&"1

	〉e
;<*#,

(%)*

 (7)

As can be seen in Formula 7, the definition of the candidate's process space
requirement is based on a 2 * 2 matrix whose first line describes the computational
element of origin and destination based on the requirements of the process, and the
second line describes the element. Origin and destination calculations are based on
the requirements of the process definition in the global activity. Each process matrix
element describing the candidate migration process is in the form of a vector set. Each
member of the collection defining each row indicates the extent to which the process
needs a specific resource in the source or destination computational element based
on the process need or the defined need arising from the definition of the process in
the global activity. As with Formula 1, classification of sources can provide for Formula
7, and a formula similar to Formula 2 can provide. The candidate process descriptor
matrix is defined based on two variables of time and event. In traditional computing
systems, the status of the two computational elements of origin and destination is
described based on the requirements of the candidate migration process. The length
of the process migration process does not change.

The system manager, t = Zeta, migrates processes based on the information
received about the process requirements that the source computing element cannot
respond to requests. The system manager, based on the information received by the
user in Process Requirements Through application tools such as PBS, finds a
destination computing element that can meet the processing requirements of a
process migration candidate. Then, by calling the Lazy Process migration, process
migration activities begin. In traditional computing systems, neither of the two elements
of distribution management and lazy process migration management collects the
status of changes made to the process requirements and consequently describes the
source and destination computational element. They do not represent information and
assume that the information collected at t = Zeta is valid until the end of the migration
process. This event is even though in Exascale systems distributed at any point in
implementing process migration activities, the possibility of a dynamic and interactive
event occurring in the candidate migration process element. There are requirements
for this element and, consequently, a description of the source and destination
computational element.

As shown in Figure 1, the process is usually in the normal state at the moment t =
Zeta. Failure to respond to the process request in the computational element changes
the process to the migration state and passes the executable program code. Based
on the lazy process migration mechanism, attempts to transfer memory pages. In
distributed Exascale systems, a dynamic and interactive event can also occur in
addition to the process's normal state, leading to a change in the status of the process
from the conventional process to the candidate migration process. Be considered a
factor in changing the status of the process from the conventional process to the
candidate migration process.

In distributed Exascalesystems, the occurrence of a dynamic and interactive event
may also change the status of the process that is unable to respond to the process
request in the computational element. This change may cause the current state of the
inability of the source computational element to remain at the request of the process.
The occurrence of a dynamic and interactive event eliminates the need for the
computational element's process and changes the status to normal. In distributed
Exascalesystems, dynamic and interactive event occurrences may also affect the
status of the migrating process, which may cause the destination computing element
to be unable to respond to the request. In this case, the description of the destination
computational element has changed from the point of view of the process
requirements, and the description of the status of the ability to respond to the request
is not. In this situation, the process migration activity of the two situations of returning
to the source computing element or calling the system manager and re-selecting the
destination element based on the new situation can be imagined and considered.

On the other hand, the occurrence of a dynamic and interactive event may change
the status of the immigrant candidate's process requirement. One can either return to
the source computing element or call the distribution management element. Load and
re-select the destination element. A dynamic and interactive event may also affect the
page transfers during the migration process. The page transfer pattern between the
source and destination computational elements does not follow the lazy process
migration mechanism. In this case, the Exa-Lazy process migration element must be
able to change the mechanism according to changes in the page transfer pattern.

In Formula 7, the candidate migration process describes a process based on two
independent variables, page and time. The time-independent variable involves
executing activities that change the candidate migration process, and transfer refers
to implementing process-related activities. Considering two independent variables of
time and page allows the Exa-Lazy process migration to be aware of the status of the
computational elements of origin, destination, and changes in the global activity of
which the migratory process is a part.

Ehsan Mousavi Khaneghah, et al.

185

References
Afzal, S., & Kavitha, G. (2019). Load balancing in cloud computing–A hierarchical

taxonomical classification. Journal of Cloud Computing, 8(1), 1-24.
Al-Dhuraibi, Y. (2018). Flexible framework for elasticity in cloud computing (Doc-

toral dissertation, Université lille1).
Anawar, M. R., et al. (2018). Fog computing: An overview of big IoT data analyt-

ics. Wireless Communications and Mobile Computing, 2018.
Anzt, H., et al. (2020). Preparing sparse solvers for exascale computing. Philo-

sophical Transactions of the Royal Society A, 378(2166), 20190053.
Ashraf, M. U., et al. (2018). Toward exascale computing systems: An energy effi-

cient massive parallel computational model. International Journal of Advanced Com-
puter Science and Applications, 9(2).

Barak, A., & La’adan, O. (1998). The MOSIX multicomputer operating system for
high performance cluster computing. Future Generation Computer Systems, 13(4-5),
361-372.

Chou, C. C., et al. (2019, November). Optimizing post-copy live migration with
system-level checkpoint using fabric-attached memory. In 2019 IEEE/ACM Work-
shop on Memory Centric High Performance Computing (MCHPC) (pp. 16-24). IEEE.

Di, Z., Shao, E., & Tan, G. (2021). High-performance Migration Tool for Live Con-
tainer in a Workflow. International Journal of Parallel Programming, 49(5), 658-670.

He, T., & Buyya, R. (2021). A Taxonomy of Live Migration Management in Cloud
Computing. arXiv preprint arXiv:2112.02593.

Khaneghah, E. M., et al. (2011, December). An efficient live process migration ap-
proach for high performance cluster computing systems. In International Conference
on Innovative Computing Technology (pp. 362-373). Springer, Berlin, Heidelberg.

Khaneghah, E. M., et al. (2018). ExaMig matrix: Process migration based on ma-
trix definition of selecting destination in distributed exascale environments. Azerbai-
jan Journal of High Performance Computing, 1(1), 20-41.

Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N. (2018, February).
Challenges of process migration to support distributed exascale computing envi-
ronment. In Proceedings of the 2018 7th international conference on software and
computer applications (pp. 20-24).

Kumar, P., & Kumar, R. (2019). Issues and challenges of load balancing tech-
niques in cloud computing: A survey. ACM Computing Surveys (CSUR), 51(6), 1-35.

LaViola, J. J., Hachet, M., & Billinghurst, M. (2011, March). Message from the
symposium chairs. In 2011 IEEE Symposium on 3D User Interfaces (3DUI) (pp. vii-
vii). IEEE Computer Society.

that are not answered by the source computing element and passed to the destination
computing element for the response.

As can be seen in Formula 6, if the vector of the best Alpha approximation in the
source element is equal to the Beta vector, the result of Formula 6 mapping is the
mapping of the response space to the requirements of the candidate process. It results
from responding to processing requests in the destination computing element.
Similarly, it can show that if the vector of the best approximation of Alpha in the
destination computational element is equal to the Beta vector, the mapping result
necessarily leads to the completion of the process execution process in the destination
computational element.

The process concept is not considered abstract or part of global activity in
distributed Exascale systems. Considering the process as part of a global activity
allows the process to have a set of interactions and connections between processes
with other member processes of the global activity. This event makes the concept of
Candidate Process Migration Requirements in distributed Exascalesystems in need of
development more than traditional systems. Part of the requirements of the candidate
migration process in distributed Exascalesystems is due to the requirements of the
process and part of the interactions and communications and the definition of the
process in the context of global activity. With this in mind, the definition of a candidate
immigration process from the perspective of the migration management element of Exa
Lazy processes can extend from Formula 1 to Formula 7.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃!"#$%$(𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃, 𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃) = d
〈𝑃𝑃&!0 , … , 𝑃𝑃&"0

	〉 〈𝑃𝑃&!0 , … , 𝑃𝑃&"0
	〉

〈𝑃𝑃&!1 , … , 𝑃𝑃&"1
	〉 〈𝑃𝑃&!1 , … , 𝑃𝑃&"1

	〉e
;<*#,

(%)*

 (7)

As can be seen in Formula 7, the definition of the candidate's process space
requirement is based on a 2 * 2 matrix whose first line describes the computational
element of origin and destination based on the requirements of the process, and the
second line describes the element. Origin and destination calculations are based on
the requirements of the process definition in the global activity. Each process matrix
element describing the candidate migration process is in the form of a vector set. Each
member of the collection defining each row indicates the extent to which the process
needs a specific resource in the source or destination computational element based
on the process need or the defined need arising from the definition of the process in
the global activity. As with Formula 1, classification of sources can provide for Formula
7, and a formula similar to Formula 2 can provide. The candidate process descriptor
matrix is defined based on two variables of time and event. In traditional computing
systems, the status of the two computational elements of origin and destination is
described based on the requirements of the candidate migration process. The length
of the process migration process does not change.

The system manager, t = Zeta, migrates processes based on the information
received about the process requirements that the source computing element cannot
respond to requests. The system manager, based on the information received by the
user in Process Requirements Through application tools such as PBS, finds a
destination computing element that can meet the processing requirements of a
process migration candidate. Then, by calling the Lazy Process migration, process
migration activities begin. In traditional computing systems, neither of the two elements
of distribution management and lazy process migration management collects the
status of changes made to the process requirements and consequently describes the
source and destination computational element. They do not represent information and
assume that the information collected at t = Zeta is valid until the end of the migration
process. This event is even though in Exascale systems distributed at any point in
implementing process migration activities, the possibility of a dynamic and interactive
event occurring in the candidate migration process element. There are requirements
for this element and, consequently, a description of the source and destination
computational element.

As shown in Figure 1, the process is usually in the normal state at the moment t =
Zeta. Failure to respond to the process request in the computational element changes
the process to the migration state and passes the executable program code. Based
on the lazy process migration mechanism, attempts to transfer memory pages. In
distributed Exascale systems, a dynamic and interactive event can also occur in
addition to the process's normal state, leading to a change in the status of the process
from the conventional process to the candidate migration process. Be considered a
factor in changing the status of the process from the conventional process to the
candidate migration process.

In distributed Exascalesystems, the occurrence of a dynamic and interactive event
may also change the status of the process that is unable to respond to the process
request in the computational element. This change may cause the current state of the
inability of the source computational element to remain at the request of the process.
The occurrence of a dynamic and interactive event eliminates the need for the
computational element's process and changes the status to normal. In distributed
Exascalesystems, dynamic and interactive event occurrences may also affect the
status of the migrating process, which may cause the destination computing element
to be unable to respond to the request. In this case, the description of the destination
computational element has changed from the point of view of the process
requirements, and the description of the status of the ability to respond to the request
is not. In this situation, the process migration activity of the two situations of returning
to the source computing element or calling the system manager and re-selecting the
destination element based on the new situation can be imagined and considered.

On the other hand, the occurrence of a dynamic and interactive event may change
the status of the immigrant candidate's process requirement. One can either return to
the source computing element or call the distribution management element. Load and
re-select the destination element. A dynamic and interactive event may also affect the
page transfers during the migration process. The page transfer pattern between the
source and destination computational elements does not follow the lazy process
migration mechanism. In this case, the Exa-Lazy process migration element must be
able to change the mechanism according to changes in the page transfer pattern.

In Formula 7, the candidate migration process describes a process based on two
independent variables, page and time. The time-independent variable involves
executing activities that change the candidate migration process, and transfer refers
to implementing process-related activities. Considering two independent variables of
time and page allows the Exa-Lazy process migration to be aware of the status of the
computational elements of origin, destination, and changes in the global activity of
which the migratory process is a part.

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

186

Masdari, M., & Khoshnevis, A. (2020). A survey and classification of the workload
forecasting methods in cloud computing. Cluster Computing, 23(4), 2399-2424.

Morin, C., et al. (2003, August). Kerrighed: a single system image cluster oper-
ating system for high performance computing. In European Conference on Parallel
Processing (pp. 1291-1294). Springer, Berlin, Heidelberg.

Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani ShowkatAbad, A.
(2018). A mathematical multi-dimensional mechanism to improve process migra-
tion efficiency in peer-to-peer computing environments. Cogent Engineering, 5(1),
1458434.

Noshy, M., Ibrahim, A., & Ali, H. A. (2018). Optimization of live virtual machine
migration in cloud computing: A survey and future directions. Journal of Network and
Computer Applications, 110, 1-10.

Pickartz, S., Breitbart, J., & Lankes, S. (2016). Implications of process-migration in
virtualized environments. In Proceedings of the 1st COSH Workshop on Co-Schedul-
ing of HPC Applications (p. 31).

Plank, J. S., & Thomason, M. G. (2001). Processor allocation and checkpoint inter-
val selection in cluster computing systems. Journal of Parallel and distributed Com-
puting, 61(11), 1570-1590.

Ranjan, A., et al. (2015, March). DyReCTape: A dynamically reconfigurable cache
using domain wall memory tapes. In 2015 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE) (pp. 181-186). IEEE.

Rough, J., & Gościński, A. (1998). PVM on the RHODOS: A Preliminary Perfor-
mance Study. Deakin University, School of Computing and Mathematics.

Setiawan, I., & Murdyantoro, E. (2016, October). Commodity cluster using single
system image based on Linux/Kerrighed for high-performance computing. In 2016
3rd International Conference on Information Technology, Computer, and Electrical
Engineering (ICITACEE) (pp. 367-372). IEEE.

Shah, V., & Donga, J. (2020). Load balancing by process migration in distributed
operating system. LAP LAMBERT Academic Publishing.

Stoyanov, R., & Kollingbaum, M. J. (2018, June). Efficient live migration of linux
containers. In International Conference on High Performance Computing (pp. 184-
193). Springer, Cham.

Stoyanov, R., & Kollingbaum, M. J. (2018, June). Efficient live migration of linux
containers. In International Conference on High Performance Computing (pp. 184-
193). Springer, Cham.

Talaat, F. M., et al. (2020). A load balancing and optimization strategy (LBOS)
using reinforcement learning in fog computing environment. Journal of Ambient Intel-
ligence and Humanized Computing, 11(11), 4951-4966.

Tang, Z., et al. (2018). Migration modeling and learning algorithms for containers
in fog computing. IEEE Transactions on Services Computing, 12(5), 712-725.

Thoman, P., et al. (2018). A taxonomy of task-based parallel programming tech-
nologies for high-performance computing. The Journal of Supercomputing, 74(4),
1422-1434.

Vivek, V., et al. (2019). Payload fragmentation framework for high-performance
computing in cloud environment. The Journal of Supercomputing, 75(5), 2789-2804.

Ehsan Mousavi Khaneghah, et al.

187

Xu, Y., et al. (2019). Dynamic switch migration in distributed software-defined
networks to achieve controller load balance. IEEE Journal on Selected Areas in Com-
munications, 37(3), 515-529.

Yang, K., Gu, J., Zhao, T., & Sun, G. (2011, August). An optimized control strategy
for load balancing based on live migration of virtual machine. In 2011 Sixth Annual
ChinaGrid Conference (pp. 141-146). IEEE.

Yousafzai, A., et al. (2019). Process migration-based computational offloading
framework for IoT-supported mobile edge/cloud computing. IEEE internet of things
journal, 7(5), 4171-4182.

Submitted: 17.08.2021
Accepted: 03.11.2021

Azerbaijan Journal of High Performance Computing, 4 (2), 2021

