
39

Trust Base Job Scheduling in Cloud
Computing
Islamic Azad University, Ashtian Branch, Ashtian, Iran, arshad.rezaei23@gmail.com

*Correspondence:
Farshad Rezaei, Islamic
Azad University, Ashtian

Branch, Ashtian, Iran,
arshad.rezaei23@gmail.

com

Abstract
Cloud computing is a new technology recently being devel-
oped seriously. Scheduling is an essential issue in the area of
cloud computing. There is an extensive literature concerning
scheduling in the area of distributed systems. Some of them are
applicable for cloud computing. Traditional scheduling meth-
ods are unable to provide scheduling in cloud environments.
According to a simple classification, scheduling algorithms in
the cloud environment are divided into two main groups: batch
mode and online heuristics scheduling. This paper focuses
on the trust of cloud-based scheduling algorithms. According
to the literature, the existing algorithm examinee latest algo-
rithm is related to an algorithm trying to optimize scheduling
using the Trust method. The existing algorithm has some draw-
backs, including the additional overhead and inaccessibility
to the past transaction data. This paper is an improvement
of the trust-based algorithm to reduce the drawbacks of the
existing algorithms. Experimental results indicate that the pro-
posed method can execute better than the previous method.
The efficiency of this method depends on the number of nods
and tasks. The more trust in the number of nods and tasks, the
more the performance improves when the time cost increases

Keyword: Cloud Computing, Task Scheduling, Trust Method,
Distributed Systems, Heuristics Scheduling

Azerbaijan Journal of High Performance Computing, Vol 4, Issue 1, 2021, pp. 39-47
https://doi.org/10.32010/26166127.2021.4.1.39.47

1. Introduction
Cloud Computing is a trending technology that allows users to use computing

resources remotely in a pay-per-use model. One of the main challenges in a cloud
computing environment is task scheduling, in which tasks should be scheduled efficiently
to minimize execution time and cost while maximizing resource utilization (Shukri, S. E.,
Al-Sayyed, R., Hudaib, A., & Mirjalili, S., 2021). Cloud environment enables the users
to utilize many virtual resources for every requested task, making the manual and
traditional scheduling techniques, not an efficient solution that introduces the need to
have new efficient scheduling solutions (Arunarani, A. R., Manjula, D., & Sugumaran, V.,
2019). Some researchers applied task scheduling to an environment similar to the cloud
environment, such as Dai et al. (Dai, H., Zeng, X., Yu, Z., & Wang, T., 2019). However, over
time, due to the limitation of resources and many requests and demands on qualitatively
of different users, scheduling shared resources and allocating them is treated as a

Farshad Rezaei, Shamsollah Ghanbari

40

key issue. Traditional scheduling algorithms are not efficient enough to respond to this
growing requirement (Ghanbari, S., & Othman, M., 2012; Aghababaeipour, Ali, and
Shamsollah Ghanbari, pp. 308-317. Springer, Cham, 2018; Ghanbari, Shamsollah. no.
1 (2019): 29-38.). That is why the requirement for scheduling algorithms tailored to the
cloud network was strongly felt. So trust will be achieved when we get our expectations
and received complete services (Zissis, D., & Lekkas, D., 2012; Khalifehlou, Z. A., &
Gharehchopogh, F. S., 2012, May; Kim, W., 2009). Trust is communication between
users and service providers, and during the implementation process, an important role
plays in cooperation between them (Che, J., Duan, Y., Zhang, T., & Fan, J., 2011). In
could computing, trust is highly regarded in the chosen algorithms (Mantri, A., Nandi,
S., Kumar, G., & Kumar, S., 2011, July). According to the literature (Hoffman, D. L., &
Peralta, M., 2007), 95% of users did not add their personal information on websites. So
it seems trust will have a significant impact in terms of technology adoption (Friedman,
B., Khan Jr, P. H., & Howe, D. C., 2000; McKnight, D. H., Choudhury, V., & Kacmar, C.,
2002). To meet the challenges of large-scale applications, job scheduling algorithms are
essential (Fox, A., Griffith, R., Joseph, A., et al., 2009). By mapping user-related jobs into
the appropriate resources, the job scheduling mechanism can increase efficiency and
reduce makespan (Özdamar, L., & Ulusoy, G., 1995). In this regard, various algorithms
(Li, J., Qiu, M., Niu, J., Gao, W., Zong, Z., & Qin, X., 2010, August; Qi, P., & Li, L. S., 2012,
August; Xu, B., Zhao, C., Hu, E., & Hu, B., 2011) have been proposed in this study; we
have a plan to improve the model of the Cloud-DLS algorithm.

2. Related work
Some researchers applied task scheduling to environments similar to the cloud

environment, such as in Dai et al. (2019). Another research by Lin et al. (2019) applied
in the manufacturing sector to support production decisions made in smart factories.
The main purpose in the schedule coming tasks with considering edge computing. A
recent application of GA in task schedules was proposed by Jena and Mohanty (2018).
Recent research for automating big data task scheduling in a cloud environment was
proposed by Rjoub et al. (2019), the main purpose is to help the cloud users deal with
their tasks with good performance. The latest related algorithm is called Cloud-DLS,
which is based on Bayesian theory. It leads us to algorithm an efficient scheduling
algorithm named Cloud-DLS (Wang, W., Zeng, G., Tang, D., & Yao, J., 2012) has been
proposed. In general, a trust-based relationship is variable. One node bypassing the
time whiles its successful communication with other nodes increases; trust other nodes
to provide services that can be changed over time. There is a kind of trust between A
and B called direct trust. It can be achieved through successful cooperation between
them. Besides, there are recommended trust that if a node has no communication,
the other nodes can receive it from other nodes. Based on its strategy, estimate it.
Trust is not a simple issue but a process that can be calculated to a certain level.
In this algorithm, there are two parameter names u and v: the number of successful
and number of failure interactions. For computing u and v after n time sequences, the
following formula is used:

𝑉𝑉(𝑛𝑛) = ∑ 𝑣𝑣(𝑖𝑖)𝑛𝑛!"#$
%&# (1)

𝑈𝑈(𝑛𝑛) = ∑ 𝑢𝑢(𝑖𝑖)𝑛𝑛!"#$
%&# (2)

𝑉𝑉(𝑖𝑖) = 𝑉𝑉(𝑖𝑖 − 1)𝑛𝑛 + 𝑉𝑉(𝑖𝑖)

𝑈𝑈(𝑖𝑖) = 𝑈𝑈(𝑖𝑖 − 1)𝑛𝑛 + 𝑈𝑈(𝑖𝑖)

 𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2'(
')
3 ∗ 100 (3)

Farshad Rezaei & Shamsollah Ghanbari

41

𝑉𝑉(𝑛𝑛) = ∑ 𝑣𝑣(𝑖𝑖)𝑛𝑛!"#$
%&# (1)

𝑈𝑈(𝑛𝑛) = ∑ 𝑢𝑢(𝑖𝑖)𝑛𝑛!"#$
%&# (2)

𝑉𝑉(𝑖𝑖) = 𝑉𝑉(𝑖𝑖 − 1)𝑛𝑛 + 𝑉𝑉(𝑖𝑖)

𝑈𝑈(𝑖𝑖) = 𝑈𝑈(𝑖𝑖 − 1)𝑛𝑛 + 𝑈𝑈(𝑖𝑖)

 𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2'(
')
3 ∗ 100 (3)

To computing u(n) and v(n), general information and transaction processing that
has been happened in the past exist and is stored in the data center. Then a decay
factor allocates to them that can be a minute, a day, a month, a year, or any time
interval. Complete information will be achieved to computing u and v; however, a node
decided to use them or not. The problem with this method is that high memory usage
is logged and cased. For computing them at its sequences:

𝑉𝑉(𝑛𝑛) = ∑ 𝑣𝑣(𝑖𝑖)𝑛𝑛!"#$
%&# (1)

𝑈𝑈(𝑛𝑛) = ∑ 𝑢𝑢(𝑖𝑖)𝑛𝑛!"#$
%&# (2)

𝑉𝑉(𝑖𝑖) = 𝑉𝑉(𝑖𝑖 − 1)𝑛𝑛 + 𝑉𝑉(𝑖𝑖)

𝑈𝑈(𝑖𝑖) = 𝑈𝑈(𝑖𝑖 − 1)𝑛𝑛 + 𝑈𝑈(𝑖𝑖)

 𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2'(
')
3 ∗ 100 (3)

𝑉𝑉(𝑛𝑛) = ∑ 𝑣𝑣(𝑖𝑖)𝑛𝑛!"#$
%&# (1)

𝑈𝑈(𝑛𝑛) = ∑ 𝑢𝑢(𝑖𝑖)𝑛𝑛!"#$
%&# (2)

𝑉𝑉(𝑖𝑖) = 𝑉𝑉(𝑖𝑖 − 1)𝑛𝑛 + 𝑉𝑉(𝑖𝑖)

𝑈𝑈(𝑖𝑖) = 𝑈𝑈(𝑖𝑖 − 1)𝑛𝑛 + 𝑈𝑈(𝑖𝑖)

 𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2'(
')
3 ∗ 100 (3)

𝑉𝑉(𝑛𝑛) = ∑ 𝑣𝑣(𝑖𝑖)𝑛𝑛!"#$
%&# (1)

𝑈𝑈(𝑛𝑛) = ∑ 𝑢𝑢(𝑖𝑖)𝑛𝑛!"#$
%&# (2)

𝑉𝑉(𝑖𝑖) = 𝑉𝑉(𝑖𝑖 − 1)𝑛𝑛 + 𝑉𝑉(𝑖𝑖)

𝑈𝑈(𝑖𝑖) = 𝑈𝑈(𝑖𝑖 − 1)𝑛𝑛 + 𝑈𝑈(𝑖𝑖)

 𝐵𝐵𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 2'(
')
3 ∗ 100 (3)

To solve this problem, u and v can be computed in real
Time so there is no need to store the information. However, this method has its

difficulty, including no access to the previous information.

3. Proposed method
Generally, the problem of calculating U(n) and V(n) is the high level of consumed

memory, and the problem of calculating U(i) and V(i) methods is temporary decision-
making. It is not possible to obtain a general attitude toward the system since the last
time. The system has some disadvantages, including if one node requests service
from another node and that node offers a negative response, repeatedly in the next
communication, the request is resent regardless of this issue that such request was
already sent without receiving any response from the node. In order to describe the
implementation of the recommended method and by regarding the calculation of the
formula mentioned in the article Base work, we have benefited from a dynamic buffer
with n length, and the size of the buffer in different systems may be diverse. It may be
changed with variety in the power of processing. Then the data related to transactions
inside of buffer is saved and is applied in calculations related to trust at a brief time.
To determine the size of this buffer, the benefit of the formula that depends on power
and level of load may be tolerated by the processor at a specific time. The following
equation can calculate the size of buffers:

Where CU and CP are Power of processor and Processing

A load of processors, respectively. In order to calculate CU, we use the following
equation: CU is equal to Frequency of processor * number of core processing so
the size of the buffer can be calculated locally. Then, in order to save the required
data queue is used. This queue can be either linear or loop. The linear queue due to
potential problems that importance is the gradual movement of elements toward the
end of the queue and lack of ability to use homes at the beginning of queue that is
empty due to elimination shall not be applicable for this method. Thus, instead, the
loop queues are used for saving data.

Azerbaijan Journal of High Performance Computing, 4 (1), 2021

42

Table 1. Table for Definition of Parameters:
Remarks Abbreviation

Processing load of processor CU
The processing power of the CPU CP

Recommended trust (rt)
Direct trust (dt)

Number of successful Interaction after nth
sequence

V(n)

Number of failure Interaction after nth
sequence

U(n)

Number of successful Interaction at the ith
sequence

V(i)

Number of failure Interaction at the ith
sequence

U(i)

The algorithm described above may be implemented in 2 phases which are
described:

Fig. 1. Method of saving data in loop queue

• First Phase:
In the first phase shown in Fig 2, the full available information in the system, including

time of transactions, information related to the success of failure, is discovered and
recognized. Then if k equals 1, then the parameters u (i) and v (i) are calculated based
on temporary information.

Farshad Rezaei & Shamsollah Ghanbari

43

• Second Phase:
In the second phase shown in Fig. 3, upon studying the condition of k=1, the buffer

size is calculated, and then data information is saved inside buffers than in the next
stage, then the parameter v(n) and u(n)calculated.

4. Analysis of proposed methods
The following method has the following four advantages:
• The size of the buffer is determined based on the processing power of each

system and is entirely local.
• If the number of transactions increased, the buffer size is also increased so more

data could be stored.
• It is possible to obtain the valuable and applicable range of appropriate information

with local properties of any system, and in case of requirement, we may refer to them.
• When data are saved inside a system with a specific amount and calculation

ability on a regional basis, the overload will not be imposed into the system.

5. Analyzing trust level
Fig. 3 is related to implementation for calculating trust, and according to the

descriptions offered in the previous session, it is beneficial from formula 3-1; meanwhile,
level of direct trust is observed as (dt) equal 0.5, and indirect trust level is obtained by
using the information of other modes during the implementation of the algorithm that is
calculated by observing the level of λd 0.5 as it is revealed from the diagram described
above when the level of is 0.5 it moves toward one by the lower slope.

Fig. 2. Diagram of the first phase Fig. 3. Diagram of the second
phase

Azerbaijan Journal of High Performance Computing, 4 (1), 2021

44

6. Analyzing average consumed time based on number of jobs
As shown in Fig 4, when the number of jobs is increased, the average duration

of performing calculations is also increased, but with this difference, the submitted
method in this research shows higher time compared to the primary method. This
condition is whereas the submitted method requires considering the data related to
performed transactions in the determined range; thus, it is required for more time for
processing and implementing jobs.

Fig. 4. Average scheduling length based on number of tasks

Fig. 5. The average ratio of successful execution based on the number of tasks

7. Analyzing level of success based on number of jobs
In Fig. 5, When the number of jobs is added or according to diagram 4-3, it is

required for more time; but, on the other hand, we may obtain more successful
transactions. This event is that whereas the submitted method on behalf of the related
data benefits from previous transactions for making the decision; thus, it is required for
more time for processing data; nevertheless, it may offer more acceptable efficiency
for more successful transactions.

Farshad Rezaei & Shamsollah Ghanbari

45

Fig. 6. Average scheduling length based on number of nodes

Fig. 7. Average consumed time for both methods is reduced

8. Analyzing level of success based on number of jobs
In Fig. 6, When the number of jobs is added or according to diagram 4-3, it is

required for more time; but, on the other hand, we may obtain more successful
transactions. This event is that whereas the submitted method on behalf of the related
data benefits from previous transactions for making the decision; thus, it is required for
more time for processing data; nevertheless, it may offer more acceptable efficiency
for more successful transactions.

9. Analyzing average consumed time based on number of nodes
In Fig. 7, when the number of computing nodes is increased, the average consumed

time for both methods is reduced, but the proposed method costs more time.

10. Conclusion
The recommended method has a more suitable scale and is better implemented in

comparison to the previous method. Moreover, the efficiency of this method depends
on the number of nodes and affairs, i.e., through the increasing number of nodes and

Azerbaijan Journal of High Performance Computing, 4 (1), 2021

46

affairs, the performance is improved when time cost is increased. In order to calculate
the level of trust in computer environments, it is applied from a kind of mechanism
based on trust for reducing error for allocation of duties and guarantee for performing
tasks in a safe environment. The main idea of this method was to solve the problems for
the traditional formula of timetable, and the trustability was increased simultaneously.

References
S.E Shukri, R. AL-sayyed, A.Hudaib et al., Enhanced multi-verse optimizer for task

scheduling in cloud computing environment. Expert System With Applications (2020).
Arunarani, A. R., Manjula, D., & Sugumaran, V. (2019). Task scheduling techniques

in cloud computing: A literature survey. Future Generation Computer Systems, 91, 407-
415.

Che, J., Duan, Y., Zhang, T., & Fan, J. (2011). Study on the security models and strat-
egies of cloud computing. Procedia Engineering, 23, 586-593.

Dai, H., Zeng, X., Yu, Z., & Wang, T. (2019). A scheduling algorithm for autonomous
driving tasks on mobile edge computing servers. Journal of Systems Architecture, 94,
14-23.

Dai, H., Zeng, X., Yu, Z., & Wang, T. (2019). A scheduling algorithm for autonomous
driving tasks on mobile edge computing servers. Journal of Systems Architecture, 94,
14-23.

Fox, A., Griffith, R., Joseph, A., et al. (2009). Above the clouds: A berkeley view of
cloud computing. Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS, 28(13), 2009.

Friedman, B., Khan Jr, P. H., & Howe, D. C. (2000). Trust online. Communications of
the ACM, 43(12), 34-40.

Ghanbari, S., & Othman, M. (2012). A priority based job scheduling algorithm in cloud
computing. Procedia Engineering, 50(0), 778-785.

Aghababaeipour, Ali, and Shamsollah Ghanbari. “A new adaptive energy-aware job
scheduling in cloud computing.” In International Conference on Soft Computing and
Data Mining, pp. 308-317. Springer, Cham, 2018.

Ghanbari, Shamsollah. “Priority-aware Job Scheduling Algorithm in Cloud Comput-
ing: A Multi-criteria Approach.” Azerbaijan Journal of High Performance Computing 2,
no. 1 (2019): 29-38.

Hoffman, D. L., & Peralta, M. (2007). Building con trust online. Communication of the
ACM, 1, 80-85.

Jena, T., & Mohanty, J. R. (2018). GA-based customer-conscious resource allocation
and task scheduling in multi-cloud computing. Arabian Journal for Science and Engi-
neering, 43(8), 4115-4130.

Khalifehlou, Z. A., & Gharehchopogh, F. S. (2012, May). Security Directions in cloud
Computing Environments. In 5th International Conference on Information Security and
Cryptology (ISCTURKEY2012), Ankara, Turkey (pp. 327-330).

Kim, W. (2009). Cloud computing: Today and tomorrow. J. Object Technol., 8(1),
65-72.

Li, J., Qiu, M., Niu, J., Gao, W., Zong, Z., & Qin, X. (2010, August). Feedback dynamic
algorithms for preemptable job scheduling in cloud systems. In 2010 IEEE/WIC/ACM

Farshad Rezaei & Shamsollah Ghanbari

47

International Conference on Web Intelligence and Intelligent Agent Technology (Vol. 1,
pp. 561-564). IEEE.

Lin, C. C., Deng, D. J., Chih, Y. L., & Chiu, H. T. (2019). Smart manufacturing sched-
uling with edge computing using multiclass deep Q network. IEEE Transactions on In-
dustrial Informatics, 15(7), 4276-4284.

Mantri, A., Nandi, S., Kumar, G., & Kumar, S. (2011, July). High performance architec-
ture and grid computing. In International Conference, HPAGC.

McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust
measures for e-commerce: An integrative typology. Information systems research, 13(3),
334-359.

Özdamar, L., & Ulusoy, G. (1995). A survey on the resource-constrained project
scheduling problem. IIE transactions, 27(5), 574-586.

Qi, P., & Li, L. S. (2012, August). Job scheduling algorithm based on fuzzy quotient
space theory in cloud environment. In 2012 IEEE International Conference on Granular
Computing (pp. 388-393). IEEE.

Rjoub, G., Bentahar, J., Wahab, O. A., & Bataineh, A. (2019, August). Deep smart
scheduling: A deep learning approach for automated big data scheduling over the
cloud. In 2019 7th International Conference on Future Internet of Things and Cloud (Fi-
Cloud) (pp. 189-196). IEEE.

Shukri, S. E., Al-Sayyed, R., Hudaib, A., & Mirjalili, S. (2021). Enhanced multi-verse
optimizer for task scheduling in cloud computing environments. Expert Systems with
Applications, 168, 114230.

Wang, W., Zeng, G., Tang, D., & Yao, J. (2012). Cloud-DLS: Dynamic trusted sched-
uling for Cloud computing. Expert Systems with Applications, 39(3), 2321-2329.

Xu, B., Zhao, C., Hu, E., & Hu, B. (2011). Job scheduling algorithm based on Berger
model in cloud environment. Advances in Engineering Software, 42(7), 419-425.

Zissis, D., & Lekkas, D. (2012). Addressing cloud computing security issues. Future
Generation computer systems, 28(3), 583-592.

Submitted: 17.06.2020
Accepted: 14.05.2021

Azerbaijan Journal of High Performance Computing, 4 (1), 2021

