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Abstract
Federated Learning is a new paradigm of Machine Learning. The 
main idea behind FL is to provide a decentralized approach to 
Machine Learning. Traditional ML algorithms are trained in serv-
ers with data collected by clients, but data privacy is the primary 
concern. This is where FL comes into play: all clients train their 
model locally and then share it with a global model in the server 
and receive it back. However, FL has problems, such as pos-
sible cyberattacks, aggregating most appropriately, scaling the 
non-IID data, etc. This paper highlights current attacks, defens-
es, pros and cons of aggregating methods, and types of non-IID 
data based on publications in this field.
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1. Introduction
As Machine Learning spreads more and more, new challenges are faced. 

Another trend that has been observed during the last years is the IoT (Al Hayajneh, 
A., Bhuiyan, M. Z. A., & McAndrew, I. 2020). Today, more and more devices are 
included in business, sciences, etc., which collect data and help people in decision 
making. To make the most interest in those fields, these devices send data to the 
server to one global model to make a better Machine Learning model. However, 
in this case, data privacy issue comes into play. The price of data is increasing, 
and sometimes sharing this data is not in the interest of the data owner. Federated 
Learning overcomes this problem (Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. 2020). 
The main idea behind FL is that the global model can be trained without direct access 
to data if the devices can train the model locally (Sun, T., Li, D., & Wang, B. 2022). 
In this case, models are trained in devices, and the trained model is sent to a central 
server. The central server aggregated these models and sent them back to the client. 
The process is shown in Figure 1.

Thanks to increased calculation power and storage of devices, this has become 
even easier nowadays. The calculation and storage of processes in local devices and 
not on servers is called edge computing and several works were already done in this 
field.
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Fig. 1: Federated Learning process

However, FL comes with challenges. One of the main challenges FL face is 
aggregation (Ek, S., Portet, F., Lalanda, P., & Vega, G.,2020). Evaluation of federated 
learning aggregation algorithms: application to human activity recognition. As 
discussed earlier, clients train models and send them to the server to aggregate. 
However, these aggregations are not easy since most of the ML problems are a 
black box, and it is hard to determine what is going on during the process. Several 
aggregation methods have been proposed which will be discussed in the following 
sections. Although they do what they must, they could be more flawless, and each 
has disadvantages.

Another problem FL face is cyberattacks (Blanco-Justicia, A., Domingo-Ferrer, J., 
Martínez, S., Sánchez, D., Flanagan, A., & Tan, K. E.,2021). When many devices can 
access the server, one must consider that it opens doors for different attacks. These 
attacks may be targeted on the server or the global model (Zhang, J., Zhu, H., Wang, 
F., Zhao, J., Xu, Q., & Li, H. 2022). Some of these attacks are very hard to detect and, 
when not prevented, can drastically decrease the global model's performance. In the 
third section of this paper, vulnerabilities of FL, different attack threads, and defense 
measures will be discussed. 

Handling non-IID data is also challenging for FL (Gao, L., Fu, H., Li, L., Chen, Y., 
Xu, M., & Xu, C. Z. 2022). Most machine learning algorithms are designed to work 
with IID data. So, the FL algorithms must be modified to work effectively with non-IID 
data. Since there are different types of non-IID data handling them requires different 
methods. In the fourth section, the types of non-IID data will be discussed.
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2. Aggregation Methods
2.1. Federated SGD
The Federated SGD method is the most basic and naive approach (Chen, Y., 

Sun, X., & Jin, Y.,2019). It starts by randomly initializing the neural network's weights 
randomly in the server. This neural network is sent to each client. Training is done in 
clients and sent back to the central node. This is called a communication round. After 
each communication round, averaging takes place in the server.
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Where α is the step length, gk is gradients, nk is the data in client k, and n is the 
number of clients.

There are two main approaches to federated averaging:
1. Update gradients in client: In this approach, gradients are calculated, and 

weights are updated. Then the newly updated model is sent back to the server, and all 
new weights are averaged.

2. Compute gradients in client: In this approach, gradients are calculated in the 
client, and only new gradients are sent to the server. Gradients are averaged in the 
server and used to update models.

Overall FedSGD method performs poorly because of its naive approach. The reason 
is that all weights are calculated separately, and different neurons may be optimized 
for different purposes in different clients. 

2.2. Federated Averaging (FedAVG)
The Federated averaging method is similar to Federated SGD, where gradients are 

updated in clients. This is done by:
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 When we do this, we can update gradients in clients multiple times before being 

sent back to the central node. When updating is done multiple times, it is called the 
Federated Averaging algorithm (Sannara, E. K., Portet, F., Lalanda, P., & German, V. 
E. G. A. 2021). The main advantage of the FedAVG algorithm is that each client can 
update the weights parallel, and it becomes a faster algorithm.

2.3. Federated Learning with Personalized Layers (Feder)
FedPer algorithm works similarly to FedAVG for computing weights in aggregating 

model. The main difference is how layers are approached. In the FedPer algorithm, 
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unlike FedAVG, not all layers are aggregated. In neural networks, higher levels play a 
more critical role in decision making, whereas lower-level layers extract more available 
features. FedPer algorithm can be considered an adaptation of transfer learning (Pan, 
S. J., & Yang, Q. 2010) since it uses the same idea to freeze already trained lower-
level layers and train only higher-level layers for prediction. In the FedPer algorithm, 
higher levels are client specific and are not aggregated in the server (Wu, Q., He, K., & 
Chen, X.,2020). Only lower levels are trained in the server, which helps clients handle 
different inputs and extract general information. Figure 2 demonstrates the structure of 
the FedAVG algorithm.

Fig. 2: FedAVG algorithm structure

Figure 2 shows that the model on the server cannot make the decision by itself 
since it misses higher and output layers.

2.4. Federated Matched Averaging
FedMA algorithm modifies the neural network so that new similar neurons can be 

merged and new neurons not similar to others can be added (Wang, H., Yurochkin, 
M., Sun, Y., Papailiopoulos, D., & Khazaeni, Y. 2020). This is done by layer-wise 
aggregation process. For the FedMA algorithm, the number of neurons in a layer is 
a sub-problem to solve rather than a hyper-parameter to be defined. The main idea 
behind FedMA is that all clients have similar neurons and can be merged. This can be 
done by non-parametric clustering algorithms in which neurons in the same cluster can 
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be combined into one global neuron. Beta-Bernoulli Process – Maximum a Posteriori 
(BBP-MAP) (Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, N., & 
Khazaeni, Y. 2019) is used to calculate 2D permutation matrix which helps us to identify 
which neurons should be combined. The Hungarian method is applied to the matrix to 
select neurons to be merged and neurons to be added. Modified layers are then sent 
back to clients incrementally. The idea is shown in Figure 3.

Fig. 3:  FedMA algorithm

3. Security and Attacks
The number of clients can be huge in the federated learning model. When there 

are numerous clients in one model, it can open doors for attacks on clients, servers, 
models, etc. Thus security, privacy, and integrity in one of the most critical topics 
in federated learning, and these things must be considered while designing the 
FL model (Gosselin, R., Vieu, L., Loukil, F., & Benoit, A. 2022). This section will 
discuss vulnerabilities, attacks, and possible defenses according to papers and 
publications.

3.1. Vulnerabilities
We can define vulnerabilities as a weakness in the system against malicious 

attackers to gain unauthorized access. Detecting them is usually the very first step 
when it comes to security. After vulnerabilities are detected in defense, anti-attack 
actions can be taken accordingly, thus tightening the gaps in the defense mechanism 
of the FL model (Liu, P., Xu, X., & Wang, W. 2022). We can classify the vulnerabilities 
into three main groups. These groups are very similar to vulnerabilities in distributed 
systems.

1. Attacking through communication channels: During the FL process, weights are 
exchanged between clients and servers via communication channels. The man-in-
the-middle can access and manipulate these weights during the exchange process. 
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Fig. 4:  Man-in-the-middle attacks

Thus, securing communication lines is crucial to secure and safe messages during 
communication rounds. 

2. Byzantine nodes: In FL, the number of clients is huge; some are likely Byzantine 
nodes. These nodes are "bad" nodes and send the wrong models and gradients to 
the server. As a result, the performance of the FL model decreases drastically. These 
attacks are known as data poisoning. (Bhagoji, A. N., Chakraborty, S., Mittal, P., & 
Calo, S., 2019)

3. Failure of the single point: All clients send updated weights or gradients to the 
server. So, the server is the cornerstone of the model and must be robust and secure 
to reduce the risk of failure of the FL model. Thus, the security of the server is crucial 
both physically and electronically. Security software, constant updates, and all other 
security measures must be done to guarantee the server's security (Lyu, L., Yu, H., & 
Yang, Q. 2020).

3.2. Possible Attacks
Cyberattacks are widespread to attack and decrease the performance of the FL 

model. In this section, the most common ones will be discussed.
1. Poisoning attacks: Poisoning attacks are the most common attacks on FL models. 

The main idea behind this attack is to send malicious and rigged data to the server to 
reduce the performance of the global model (Zhang, J., Zhu, H., Wang, F., Zhao, J., 
Xu, Q., & Li, H., 2022). The demonstration is shown in Figure 5. There are two main 
types of poisoning attacks: Data poisoning and Model poisoning.

• In the data poisoning approach, the attacker includes malicious data to send to the 
server. These data create bias in the global model. Sometimes, to make it undetectable, 
attackers modify model parameters but do it repeatedly, making it harder for the FL 
model to detect if the data is poisonous. (Tolpegin, V., Truex, S., Gursoy, M. E., & Liu, 
L., 2020)

• Model poisoning is more direct. It sends a modified and infected model to the 
server without inserting data.
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Fig. 5: Model poisoning attack

2. Backdoor attacks: These attacks are similar to poisoning attacks. However, the 
only difference is that Backdoor attacks do not aim to reduce global model accuracy. 
These attacks focus only on one label. Attackers create instances very similar to one 
label with minor changes and label it entirely differently (Wu, Q., He, K., & Chen, X.,2020). 
By doing so, overall model accuracy remains mostly the same but significantly impacts 
classification. An example is shown in figure 6.

Fig. 6:  Example of backdoor attack
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3. Generative Adversarial Network (GAN) Based Attacks: It is a type of poisoning 
attack. In this attack, attackers use Generative Adversarial Network (GAN) to create 
realistic data and manipulate the labels in a way they want. (Zhang, J., Chen, B., Cheng, 
X., Binh, H. T. T., & Yu, S. 2020). These GANs are optimized in the client; weights are 
modified to manipulate the weights on the global model. These attacks are tough to 
detect since the generated data are very realistic.

4.  Communication attacks: As mentioned in the previous section, the weights 
or gradients can be obtained by attackers and modified during the communication 
round. There are two main types of communication attacks:

• Man-in-the-middle attacks: In this attack, attackers can reach data during 
communication and replace them with malicious data. Usually, attackers create a fake 
network between clients and servers. Thus, every update goes through the attackers' 
hands (Wang, D., Li, C., Wen, S., Nepal, S., & Xiang, Y.(2020).

• Communication bottleneck attacks: Here, attackers increase the number 
of clients, which causes the dropout of some users. Additionally, removing clients 
based on their connection status leads to biases in the global shared model over 
time and impacts the aggregate of individual updates. Furthermore, methods that 
reduce communication overhead, such as compression, can be used destructively to 
introduce noise into individual updates and lower their quality. (Chen, Y., Sun, X., & Jin, 
Y. 2019)

5. Free-rider attacks: In these attacks, free-riders try to acquire an updated global 
model without participating in the FL process (Lin, J., Du, M., & Liu, J. 2019). It is done 
by mimicking minor local updates. By this, an attacker can still obtain the global model. 
There can be several reasons which motivate attackers, such as:

• The attacker wants to save computational resource
• Do not want to share with the global model his local data

3.3. Defenses
In this section, defense measures will be discussed. Since there are different attack 

types, different defense mechanisms are also required against them (Rodríguez-
Barroso, N., Jiménez-López, D., Luzón, M. V., Herrera, F., & Martínez-Cámara, E., 
2023)

• Anomaly detection: Anomaly or outlier detection is a process of identifying events 
or records which does not fit the overall pattern of activity using analytical and statistical 
methods. Several methods and machine learning algorithms, such as DBSCAN, 
Isolation Tree, One-Class SVM, etc., have proven to be effective in anomaly detection. 
Anomaly detection can be effectively used to analyze new upcoming data and decide 
whether new updating should be considered by classifying it as an anomaly.  

Chen proposed a couple of approaches to using anomaly detection in FL. One 
approach was using a validation dataset (Chen, Y., Su, L., & Xu, J.,2017). The FL 
checked whether new updates received by specific clients decreased the metric in the 
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validation set. If it does, then it is marked as an anomaly. The other method is called 
Sniper, and it is based on graphs and cliques in a graph. Cao, D., Chang, S., Lin, Z., 
Liu, G., & Sun, D. ,2019)

Although anomaly detection algorithms succeed in poisoning attacks, they suffer 
from identifying and preventing backdoor attacks.

• Federated filtering: Federated filtering is another defense measure that is applied 
in order to protect FL. This is done by transferring the global model to some small 
model with steps that should be done. As a result, it increases the quality of security 
and client data privacy. Transferring to some small models also improves the time 
performance of the model (Zhu, Z., Hong, J., & Zhou, J.,2021)

• Defense against Backdoor attacks: The primary preventive measure against 
backdoor attacks is called Pruning. This is done by reducing the complexity of the 
model in trade for little accuracy. Because backdoor attacks are complex to carry 
out, it will make more sense to use small models. Small models will also be helpful in 
communication costs (Liu, K., Dolan-Gavitt, B., & Garg, S., 2018).

• Defense against GAN attacks: The defense against this attack must be better 
developed and documented. However, methods such as advanced Byzantine actor 
detection and ML using model distillation were proposed.  (Benmalek, M., Benrekia, 
M. A., & Challal, Y. ,2022)( Hayes, J., & Ohrimenko, O. ,2018),(Li, D., & Wang, J. ,2019)

4. Non-IID Data
Non-IID data stands for Non-Independent and identically distributed data. It is the 

opposite of IID data, where each data sample is independent and identically distributed 
data. The main reason behind it there are numerous clients connected to the server, 
and data distribution in one client can be completely different from the distribution of 
another client (Chen, Y., Sun, X., & Jin, Y.,2019), (Criado, M. F., Casado, F. E., Iglesias, 
R., Regueiro, C. V., & Barro, S. (2022). For example, in supervised learning, each client 
has a data sample (x, y) where x is an attribute and y is a label with some distribution 
Pk (x, y) (Kairouz, P., McMahan, H. B., Avent, B., Bellet, A. et al. 2023). In Non-IID data, 
the distribution Pk is different for each client k. Zhu (Zhu, H., Xu, J., Liu, S., & Jin, Y. 
2021) categorized Non-IID data into several categories.

1. They differ in attributes. In this category, attributes or features among clients are 
different. These features can, between clients, be the same, different, and partially the 
same. Examples are as follows:

• The same - In this type, labels are the same and attributed differ by distribution. 
We can show EMNIST dataset as an example in which a different person writes each 
number. As a result, we have different features like width, slant, and skewness, even 
for the same labels.

• Different - In this type, different clients contain different information about one 
label, like the first client containing features x1, x2, and the second containing features 
x3, x4 for the same label. For example, gastroenterologists and hepatologists have 
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entirely different feature sets, but labels can be identical.
• Partially-same - In this category, different clients can have feature set which, in 

some points, overlaps. An excellent example of it is CCTV cameras. In one room, two 
different cameras can have views from different angles. In this case, the same label 
partially has the same features. (Li, Q., Diao, Y., Chen, Q., He, B., 2021)

2. Differing on labels: In this category, label distributions differ from client to client. 
There are two closely related types of distributions:

• Labels have different distributions: The reason behind them is very loose. The 
different clients can have different training datasets. For example, client 1 has images 
mostly labeled as "Football," and client 2 has an image mostly labeled as "Tennis."

• Preference: In this type exact same data sample can be labeled differently by two 
clients. For example, client 1 provides positive feedback for the same movie, whereas 
client 2 provides negative feedback, as demonstrated in Figure 7. (Garcia-Molina, H., 
Joglekar, M., Marcus, A., Parameswaran, A., & Verroios, V. ,2016).

Fig. 7: Differing in preference
3. Differing in time: This type of data differs depending on some period. For example, 

some information is provided by client 1 for the first two weeks of some months and 
client 2 for the second two weeks of the month. (Zhu, H., Xu, J., Liu, S., & Jin, Y. ,2021)

Dealing with non-IID data is considerably different from IID data. Thus, some 
measurements must be considered when dealing with non-IID data. For example, 
calculating the gradients for linear models may be a little problematic since parameters 
are proportional to input data (Aono, Y., Hayashi, T., Wang, L., & Moriai, S. (2017). That 
is why additional methods, such as homomorphic encryption (HE), is used in linear 
methods. In contrast, neural network mostly depends on the algorithm itself. Results 
show that FedAVG algorithms perform relatively better with shallow neural network 
models. (Aono, Y., Hayashi, T., Wang, L., & Moriai, S. (2017)
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